Description: Value of the structure replacement function, deduction version.
Hint: Do not substitute N by a specific (positive) integer to be independent of a hard-coded index value. Often, ( Endx ) can be used instead of N . (Contributed by AV, 14-Mar-2020) (Revised by AV, 17-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | setsidvald.e | |- E = Slot N |
|
| setsidvald.s | |- ( ph -> S e. V ) |
||
| setsidvald.f | |- ( ph -> Fun S ) |
||
| setsidvald.d | |- ( ph -> N e. dom S ) |
||
| Assertion | setsidvald | |- ( ph -> S = ( S sSet <. N , ( E ` S ) >. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | setsidvald.e | |- E = Slot N |
|
| 2 | setsidvald.s | |- ( ph -> S e. V ) |
|
| 3 | setsidvald.f | |- ( ph -> Fun S ) |
|
| 4 | setsidvald.d | |- ( ph -> N e. dom S ) |
|
| 5 | fvex | |- ( E ` S ) e. _V |
|
| 6 | setsval | |- ( ( S e. V /\ ( E ` S ) e. _V ) -> ( S sSet <. N , ( E ` S ) >. ) = ( ( S |` ( _V \ { N } ) ) u. { <. N , ( E ` S ) >. } ) ) |
|
| 7 | 2 5 6 | sylancl | |- ( ph -> ( S sSet <. N , ( E ` S ) >. ) = ( ( S |` ( _V \ { N } ) ) u. { <. N , ( E ` S ) >. } ) ) |
| 8 | 1 2 | strfvnd | |- ( ph -> ( E ` S ) = ( S ` N ) ) |
| 9 | 8 | opeq2d | |- ( ph -> <. N , ( E ` S ) >. = <. N , ( S ` N ) >. ) |
| 10 | 9 | sneqd | |- ( ph -> { <. N , ( E ` S ) >. } = { <. N , ( S ` N ) >. } ) |
| 11 | 10 | uneq2d | |- ( ph -> ( ( S |` ( _V \ { N } ) ) u. { <. N , ( E ` S ) >. } ) = ( ( S |` ( _V \ { N } ) ) u. { <. N , ( S ` N ) >. } ) ) |
| 12 | funresdfunsn | |- ( ( Fun S /\ N e. dom S ) -> ( ( S |` ( _V \ { N } ) ) u. { <. N , ( S ` N ) >. } ) = S ) |
|
| 13 | 3 4 12 | syl2anc | |- ( ph -> ( ( S |` ( _V \ { N } ) ) u. { <. N , ( S ` N ) >. } ) = S ) |
| 14 | 7 11 13 | 3eqtrrd | |- ( ph -> S = ( S sSet <. N , ( E ` S ) >. ) ) |