Step |
Hyp |
Ref |
Expression |
1 |
|
setsidvald.e |
|- E = Slot N |
2 |
|
setsidvald.n |
|- N e. NN |
3 |
|
setsidvald.s |
|- ( ph -> S e. V ) |
4 |
|
setsidvald.f |
|- ( ph -> Fun S ) |
5 |
|
setsidvald.d |
|- ( ph -> ( E ` ndx ) e. dom S ) |
6 |
|
fvex |
|- ( E ` S ) e. _V |
7 |
|
setsval |
|- ( ( S e. V /\ ( E ` S ) e. _V ) -> ( S sSet <. ( E ` ndx ) , ( E ` S ) >. ) = ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( E ` S ) >. } ) ) |
8 |
3 6 7
|
sylancl |
|- ( ph -> ( S sSet <. ( E ` ndx ) , ( E ` S ) >. ) = ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( E ` S ) >. } ) ) |
9 |
1 2
|
ndxid |
|- E = Slot ( E ` ndx ) |
10 |
9 3
|
strfvnd |
|- ( ph -> ( E ` S ) = ( S ` ( E ` ndx ) ) ) |
11 |
10
|
opeq2d |
|- ( ph -> <. ( E ` ndx ) , ( E ` S ) >. = <. ( E ` ndx ) , ( S ` ( E ` ndx ) ) >. ) |
12 |
11
|
sneqd |
|- ( ph -> { <. ( E ` ndx ) , ( E ` S ) >. } = { <. ( E ` ndx ) , ( S ` ( E ` ndx ) ) >. } ) |
13 |
12
|
uneq2d |
|- ( ph -> ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( E ` S ) >. } ) = ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( S ` ( E ` ndx ) ) >. } ) ) |
14 |
|
funresdfunsn |
|- ( ( Fun S /\ ( E ` ndx ) e. dom S ) -> ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( S ` ( E ` ndx ) ) >. } ) = S ) |
15 |
4 5 14
|
syl2anc |
|- ( ph -> ( ( S |` ( _V \ { ( E ` ndx ) } ) ) u. { <. ( E ` ndx ) , ( S ` ( E ` ndx ) ) >. } ) = S ) |
16 |
8 13 15
|
3eqtrrd |
|- ( ph -> S = ( S sSet <. ( E ` ndx ) , ( E ` S ) >. ) ) |