| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setsms.x |
|- ( ph -> X = ( Base ` M ) ) |
| 2 |
|
setsms.d |
|- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
| 3 |
|
setsms.k |
|- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
| 4 |
|
setsms.m |
|- ( ph -> M e. V ) |
| 5 |
1 2 3 4
|
setsxms |
|- ( ph -> ( K e. *MetSp <-> D e. ( *Met ` X ) ) ) |
| 6 |
1 2 3
|
setsmsds |
|- ( ph -> ( dist ` M ) = ( dist ` K ) ) |
| 7 |
1 2 3
|
setsmsbas |
|- ( ph -> X = ( Base ` K ) ) |
| 8 |
7
|
sqxpeqd |
|- ( ph -> ( X X. X ) = ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 9 |
6 8
|
reseq12d |
|- ( ph -> ( ( dist ` M ) |` ( X X. X ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) ) |
| 10 |
2 9
|
eqtr2d |
|- ( ph -> ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = D ) |
| 11 |
7
|
fveq2d |
|- ( ph -> ( Met ` X ) = ( Met ` ( Base ` K ) ) ) |
| 12 |
11
|
eqcomd |
|- ( ph -> ( Met ` ( Base ` K ) ) = ( Met ` X ) ) |
| 13 |
10 12
|
eleq12d |
|- ( ph -> ( ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) <-> D e. ( Met ` X ) ) ) |
| 14 |
5 13
|
anbi12d |
|- ( ph -> ( ( K e. *MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) <-> ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) ) ) |
| 15 |
|
eqid |
|- ( TopOpen ` K ) = ( TopOpen ` K ) |
| 16 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 17 |
|
eqid |
|- ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) = ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) |
| 18 |
15 16 17
|
isms |
|- ( K e. MetSp <-> ( K e. *MetSp /\ ( ( dist ` K ) |` ( ( Base ` K ) X. ( Base ` K ) ) ) e. ( Met ` ( Base ` K ) ) ) ) |
| 19 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 20 |
19
|
pm4.71ri |
|- ( D e. ( Met ` X ) <-> ( D e. ( *Met ` X ) /\ D e. ( Met ` X ) ) ) |
| 21 |
14 18 20
|
3bitr4g |
|- ( ph -> ( K e. MetSp <-> D e. ( Met ` X ) ) ) |