Step |
Hyp |
Ref |
Expression |
1 |
|
setsms.x |
|- ( ph -> X = ( Base ` M ) ) |
2 |
|
setsms.d |
|- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
3 |
|
setsms.k |
|- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
4 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
5 |
|
1re |
|- 1 e. RR |
6 |
|
1lt9 |
|- 1 < 9 |
7 |
5 6
|
ltneii |
|- 1 =/= 9 |
8 |
|
basendx |
|- ( Base ` ndx ) = 1 |
9 |
|
tsetndx |
|- ( TopSet ` ndx ) = 9 |
10 |
8 9
|
neeq12i |
|- ( ( Base ` ndx ) =/= ( TopSet ` ndx ) <-> 1 =/= 9 ) |
11 |
7 10
|
mpbir |
|- ( Base ` ndx ) =/= ( TopSet ` ndx ) |
12 |
4 11
|
setsnid |
|- ( Base ` M ) = ( Base ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
13 |
3
|
fveq2d |
|- ( ph -> ( Base ` K ) = ( Base ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
14 |
12 1 13
|
3eqtr4a |
|- ( ph -> X = ( Base ` K ) ) |