Step |
Hyp |
Ref |
Expression |
1 |
|
setsms.x |
|- ( ph -> X = ( Base ` M ) ) |
2 |
|
setsms.d |
|- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
3 |
|
setsms.k |
|- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
4 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
5 |
|
tsetndxnbasendx |
|- ( TopSet ` ndx ) =/= ( Base ` ndx ) |
6 |
5
|
necomi |
|- ( Base ` ndx ) =/= ( TopSet ` ndx ) |
7 |
4 6
|
setsnid |
|- ( Base ` M ) = ( Base ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
8 |
3
|
fveq2d |
|- ( ph -> ( Base ` K ) = ( Base ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
9 |
7 1 8
|
3eqtr4a |
|- ( ph -> X = ( Base ` K ) ) |