Step |
Hyp |
Ref |
Expression |
1 |
|
setsms.x |
|- ( ph -> X = ( Base ` M ) ) |
2 |
|
setsms.d |
|- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
3 |
|
setsms.k |
|- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
4 |
|
dsid |
|- dist = Slot ( dist ` ndx ) |
5 |
|
9re |
|- 9 e. RR |
6 |
|
1nn |
|- 1 e. NN |
7 |
|
2nn0 |
|- 2 e. NN0 |
8 |
|
9nn0 |
|- 9 e. NN0 |
9 |
|
9lt10 |
|- 9 < ; 1 0 |
10 |
6 7 8 9
|
declti |
|- 9 < ; 1 2 |
11 |
5 10
|
gtneii |
|- ; 1 2 =/= 9 |
12 |
|
dsndx |
|- ( dist ` ndx ) = ; 1 2 |
13 |
|
tsetndx |
|- ( TopSet ` ndx ) = 9 |
14 |
12 13
|
neeq12i |
|- ( ( dist ` ndx ) =/= ( TopSet ` ndx ) <-> ; 1 2 =/= 9 ) |
15 |
11 14
|
mpbir |
|- ( dist ` ndx ) =/= ( TopSet ` ndx ) |
16 |
4 15
|
setsnid |
|- ( dist ` M ) = ( dist ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
17 |
3
|
fveq2d |
|- ( ph -> ( dist ` K ) = ( dist ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
18 |
16 17
|
eqtr4id |
|- ( ph -> ( dist ` M ) = ( dist ` K ) ) |