| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setsms.x |
|- ( ph -> X = ( Base ` M ) ) |
| 2 |
|
setsms.d |
|- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
| 3 |
|
setsms.k |
|- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
| 4 |
|
dsid |
|- dist = Slot ( dist ` ndx ) |
| 5 |
|
dsndxntsetndx |
|- ( dist ` ndx ) =/= ( TopSet ` ndx ) |
| 6 |
4 5
|
setsnid |
|- ( dist ` M ) = ( dist ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
| 7 |
3
|
fveq2d |
|- ( ph -> ( dist ` K ) = ( dist ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
| 8 |
6 7
|
eqtr4id |
|- ( ph -> ( dist ` M ) = ( dist ` K ) ) |