Step |
Hyp |
Ref |
Expression |
1 |
|
setsms.x |
|- ( ph -> X = ( Base ` M ) ) |
2 |
|
setsms.d |
|- ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) |
3 |
|
setsms.k |
|- ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
4 |
|
dsid |
|- dist = Slot ( dist ` ndx ) |
5 |
|
dsndxntsetndx |
|- ( dist ` ndx ) =/= ( TopSet ` ndx ) |
6 |
4 5
|
setsnid |
|- ( dist ` M ) = ( dist ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) |
7 |
3
|
fveq2d |
|- ( ph -> ( dist ` K ) = ( dist ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) |
8 |
6 7
|
eqtr4id |
|- ( ph -> ( dist ` M ) = ( dist ` K ) ) |