| Step | Hyp | Ref | Expression | 
						
							| 1 |  | setsms.x |  |-  ( ph -> X = ( Base ` M ) ) | 
						
							| 2 |  | setsms.d |  |-  ( ph -> D = ( ( dist ` M ) |` ( X X. X ) ) ) | 
						
							| 3 |  | setsms.k |  |-  ( ph -> K = ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) | 
						
							| 4 |  | setsms.m |  |-  ( ph -> M e. V ) | 
						
							| 5 |  | fvex |  |-  ( MetOpen ` D ) e. _V | 
						
							| 6 |  | tsetid |  |-  TopSet = Slot ( TopSet ` ndx ) | 
						
							| 7 | 6 | setsid |  |-  ( ( M e. V /\ ( MetOpen ` D ) e. _V ) -> ( MetOpen ` D ) = ( TopSet ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) | 
						
							| 8 | 4 5 7 | sylancl |  |-  ( ph -> ( MetOpen ` D ) = ( TopSet ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) | 
						
							| 9 | 3 | fveq2d |  |-  ( ph -> ( TopSet ` K ) = ( TopSet ` ( M sSet <. ( TopSet ` ndx ) , ( MetOpen ` D ) >. ) ) ) | 
						
							| 10 | 8 9 | eqtr4d |  |-  ( ph -> ( MetOpen ` D ) = ( TopSet ` K ) ) |