| Step |
Hyp |
Ref |
Expression |
| 1 |
|
setsid.e |
|- E = Slot ( E ` ndx ) |
| 2 |
|
setsnid.n |
|- ( E ` ndx ) =/= D |
| 3 |
|
id |
|- ( W e. _V -> W e. _V ) |
| 4 |
1 3
|
strfvnd |
|- ( W e. _V -> ( E ` W ) = ( W ` ( E ` ndx ) ) ) |
| 5 |
|
ovex |
|- ( W sSet <. D , C >. ) e. _V |
| 6 |
5 1
|
strfvn |
|- ( E ` ( W sSet <. D , C >. ) ) = ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) |
| 7 |
|
setsres |
|- ( W e. _V -> ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) = ( W |` ( _V \ { D } ) ) ) |
| 8 |
7
|
fveq1d |
|- ( W e. _V -> ( ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( ( W |` ( _V \ { D } ) ) ` ( E ` ndx ) ) ) |
| 9 |
|
fvex |
|- ( E ` ndx ) e. _V |
| 10 |
|
eldifsn |
|- ( ( E ` ndx ) e. ( _V \ { D } ) <-> ( ( E ` ndx ) e. _V /\ ( E ` ndx ) =/= D ) ) |
| 11 |
9 2 10
|
mpbir2an |
|- ( E ` ndx ) e. ( _V \ { D } ) |
| 12 |
|
fvres |
|- ( ( E ` ndx ) e. ( _V \ { D } ) -> ( ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) ) |
| 13 |
11 12
|
ax-mp |
|- ( ( ( W sSet <. D , C >. ) |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) |
| 14 |
|
fvres |
|- ( ( E ` ndx ) e. ( _V \ { D } ) -> ( ( W |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( W ` ( E ` ndx ) ) ) |
| 15 |
11 14
|
ax-mp |
|- ( ( W |` ( _V \ { D } ) ) ` ( E ` ndx ) ) = ( W ` ( E ` ndx ) ) |
| 16 |
8 13 15
|
3eqtr3g |
|- ( W e. _V -> ( ( W sSet <. D , C >. ) ` ( E ` ndx ) ) = ( W ` ( E ` ndx ) ) ) |
| 17 |
6 16
|
eqtrid |
|- ( W e. _V -> ( E ` ( W sSet <. D , C >. ) ) = ( W ` ( E ` ndx ) ) ) |
| 18 |
4 17
|
eqtr4d |
|- ( W e. _V -> ( E ` W ) = ( E ` ( W sSet <. D , C >. ) ) ) |
| 19 |
1
|
str0 |
|- (/) = ( E ` (/) ) |
| 20 |
|
fvprc |
|- ( -. W e. _V -> ( E ` W ) = (/) ) |
| 21 |
|
reldmsets |
|- Rel dom sSet |
| 22 |
21
|
ovprc1 |
|- ( -. W e. _V -> ( W sSet <. D , C >. ) = (/) ) |
| 23 |
22
|
fveq2d |
|- ( -. W e. _V -> ( E ` ( W sSet <. D , C >. ) ) = ( E ` (/) ) ) |
| 24 |
19 20 23
|
3eqtr4a |
|- ( -. W e. _V -> ( E ` W ) = ( E ` ( W sSet <. D , C >. ) ) ) |
| 25 |
18 24
|
pm2.61i |
|- ( E ` W ) = ( E ` ( W sSet <. D , C >. ) ) |