Step |
Hyp |
Ref |
Expression |
1 |
|
setsvtx.i |
|- I = ( .ef ` ndx ) |
2 |
|
setsvtx.s |
|- ( ph -> G Struct X ) |
3 |
|
setsvtx.b |
|- ( ph -> ( Base ` ndx ) e. dom G ) |
4 |
|
setsvtx.e |
|- ( ph -> E e. W ) |
5 |
1
|
fvexi |
|- I e. _V |
6 |
5
|
a1i |
|- ( ph -> I e. _V ) |
7 |
2 6 4
|
setsn0fun |
|- ( ph -> Fun ( ( G sSet <. I , E >. ) \ { (/) } ) ) |
8 |
1
|
eqcomi |
|- ( .ef ` ndx ) = I |
9 |
8
|
preq2i |
|- { ( Base ` ndx ) , ( .ef ` ndx ) } = { ( Base ` ndx ) , I } |
10 |
2 6 4 3
|
basprssdmsets |
|- ( ph -> { ( Base ` ndx ) , I } C_ dom ( G sSet <. I , E >. ) ) |
11 |
9 10
|
eqsstrid |
|- ( ph -> { ( Base ` ndx ) , ( .ef ` ndx ) } C_ dom ( G sSet <. I , E >. ) ) |
12 |
|
funvtxval |
|- ( ( Fun ( ( G sSet <. I , E >. ) \ { (/) } ) /\ { ( Base ` ndx ) , ( .ef ` ndx ) } C_ dom ( G sSet <. I , E >. ) ) -> ( Vtx ` ( G sSet <. I , E >. ) ) = ( Base ` ( G sSet <. I , E >. ) ) ) |
13 |
7 11 12
|
syl2anc |
|- ( ph -> ( Vtx ` ( G sSet <. I , E >. ) ) = ( Base ` ( G sSet <. I , E >. ) ) ) |
14 |
|
baseid |
|- Base = Slot ( Base ` ndx ) |
15 |
|
slotsbaseefdif |
|- ( Base ` ndx ) =/= ( .ef ` ndx ) |
16 |
15 1
|
neeqtrri |
|- ( Base ` ndx ) =/= I |
17 |
14 16
|
setsnid |
|- ( Base ` G ) = ( Base ` ( G sSet <. I , E >. ) ) |
18 |
13 17
|
eqtr4di |
|- ( ph -> ( Vtx ` ( G sSet <. I , E >. ) ) = ( Base ` G ) ) |