| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> A e. CC ) |
| 2 |
|
simp2 |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> P e. Prime ) |
| 3 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 4 |
2 3
|
syl |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> P e. NN ) |
| 5 |
|
simp3 |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> N e. NN0 ) |
| 6 |
4 5
|
nnexpcld |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( P ^ N ) e. NN ) |
| 7 |
|
sgmval |
|- ( ( A e. CC /\ ( P ^ N ) e. NN ) -> ( A sigma ( P ^ N ) ) = sum_ n e. { x e. NN | x || ( P ^ N ) } ( n ^c A ) ) |
| 8 |
1 6 7
|
syl2anc |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( A sigma ( P ^ N ) ) = sum_ n e. { x e. NN | x || ( P ^ N ) } ( n ^c A ) ) |
| 9 |
|
oveq1 |
|- ( n = ( P ^ k ) -> ( n ^c A ) = ( ( P ^ k ) ^c A ) ) |
| 10 |
|
fzfid |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( 0 ... N ) e. Fin ) |
| 11 |
|
eqid |
|- ( i e. ( 0 ... N ) |-> ( P ^ i ) ) = ( i e. ( 0 ... N ) |-> ( P ^ i ) ) |
| 12 |
11
|
dvdsppwf1o |
|- ( ( P e. Prime /\ N e. NN0 ) -> ( i e. ( 0 ... N ) |-> ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x e. NN | x || ( P ^ N ) } ) |
| 13 |
2 5 12
|
syl2anc |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( i e. ( 0 ... N ) |-> ( P ^ i ) ) : ( 0 ... N ) -1-1-onto-> { x e. NN | x || ( P ^ N ) } ) |
| 14 |
|
oveq2 |
|- ( i = k -> ( P ^ i ) = ( P ^ k ) ) |
| 15 |
|
ovex |
|- ( P ^ k ) e. _V |
| 16 |
14 11 15
|
fvmpt |
|- ( k e. ( 0 ... N ) -> ( ( i e. ( 0 ... N ) |-> ( P ^ i ) ) ` k ) = ( P ^ k ) ) |
| 17 |
16
|
adantl |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( i e. ( 0 ... N ) |-> ( P ^ i ) ) ` k ) = ( P ^ k ) ) |
| 18 |
|
elrabi |
|- ( n e. { x e. NN | x || ( P ^ N ) } -> n e. NN ) |
| 19 |
18
|
nncnd |
|- ( n e. { x e. NN | x || ( P ^ N ) } -> n e. CC ) |
| 20 |
|
cxpcl |
|- ( ( n e. CC /\ A e. CC ) -> ( n ^c A ) e. CC ) |
| 21 |
19 1 20
|
syl2anr |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ n e. { x e. NN | x || ( P ^ N ) } ) -> ( n ^c A ) e. CC ) |
| 22 |
9 10 13 17 21
|
fsumf1o |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> sum_ n e. { x e. NN | x || ( P ^ N ) } ( n ^c A ) = sum_ k e. ( 0 ... N ) ( ( P ^ k ) ^c A ) ) |
| 23 |
|
elfznn0 |
|- ( k e. ( 0 ... N ) -> k e. NN0 ) |
| 24 |
23
|
adantl |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
| 25 |
24
|
nn0cnd |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> k e. CC ) |
| 26 |
1
|
adantr |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> A e. CC ) |
| 27 |
25 26
|
mulcomd |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( k x. A ) = ( A x. k ) ) |
| 28 |
27
|
oveq2d |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( P ^c ( k x. A ) ) = ( P ^c ( A x. k ) ) ) |
| 29 |
4
|
adantr |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> P e. NN ) |
| 30 |
29
|
nnrpd |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> P e. RR+ ) |
| 31 |
24
|
nn0red |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> k e. RR ) |
| 32 |
30 31 26
|
cxpmuld |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( P ^c ( k x. A ) ) = ( ( P ^c k ) ^c A ) ) |
| 33 |
29
|
nncnd |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> P e. CC ) |
| 34 |
|
cxpexp |
|- ( ( P e. CC /\ k e. NN0 ) -> ( P ^c k ) = ( P ^ k ) ) |
| 35 |
33 24 34
|
syl2anc |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( P ^c k ) = ( P ^ k ) ) |
| 36 |
35
|
oveq1d |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( P ^c k ) ^c A ) = ( ( P ^ k ) ^c A ) ) |
| 37 |
32 36
|
eqtrd |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( P ^c ( k x. A ) ) = ( ( P ^ k ) ^c A ) ) |
| 38 |
33 26 24
|
cxpmul2d |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( P ^c ( A x. k ) ) = ( ( P ^c A ) ^ k ) ) |
| 39 |
28 37 38
|
3eqtr3d |
|- ( ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( P ^ k ) ^c A ) = ( ( P ^c A ) ^ k ) ) |
| 40 |
39
|
sumeq2dv |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( P ^ k ) ^c A ) = sum_ k e. ( 0 ... N ) ( ( P ^c A ) ^ k ) ) |
| 41 |
8 22 40
|
3eqtrd |
|- ( ( A e. CC /\ P e. Prime /\ N e. NN0 ) -> ( A sigma ( P ^ N ) ) = sum_ k e. ( 0 ... N ) ( ( P ^c A ) ^ k ) ) |