Metamath Proof Explorer


Theorem sgmval

Description: The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014) (Revised by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion sgmval
|- ( ( A e. CC /\ B e. NN ) -> ( A sigma B ) = sum_ k e. { p e. NN | p || B } ( k ^c A ) )

Proof

Step Hyp Ref Expression
1 simpr
 |-  ( ( x = A /\ n = B ) -> n = B )
2 1 breq2d
 |-  ( ( x = A /\ n = B ) -> ( p || n <-> p || B ) )
3 2 rabbidv
 |-  ( ( x = A /\ n = B ) -> { p e. NN | p || n } = { p e. NN | p || B } )
4 simpll
 |-  ( ( ( x = A /\ n = B ) /\ k e. { p e. NN | p || n } ) -> x = A )
5 4 oveq2d
 |-  ( ( ( x = A /\ n = B ) /\ k e. { p e. NN | p || n } ) -> ( k ^c x ) = ( k ^c A ) )
6 3 5 sumeq12dv
 |-  ( ( x = A /\ n = B ) -> sum_ k e. { p e. NN | p || n } ( k ^c x ) = sum_ k e. { p e. NN | p || B } ( k ^c A ) )
7 df-sgm
 |-  sigma = ( x e. CC , n e. NN |-> sum_ k e. { p e. NN | p || n } ( k ^c x ) )
8 sumex
 |-  sum_ k e. { p e. NN | p || B } ( k ^c A ) e. _V
9 6 7 8 ovmpoa
 |-  ( ( A e. CC /\ B e. NN ) -> ( A sigma B ) = sum_ k e. { p e. NN | p || B } ( k ^c A ) )