| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							sgnval | 
							 |-  ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							0xr | 
							 |-  0 e. RR*  | 
						
						
							| 4 | 
							
								
							 | 
							xrltne | 
							 |-  ( ( A e. RR* /\ 0 e. RR* /\ A < 0 ) -> 0 =/= A )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							mp3an2 | 
							 |-  ( ( A e. RR* /\ A < 0 ) -> 0 =/= A )  | 
						
						
							| 6 | 
							
								
							 | 
							nesym | 
							 |-  ( 0 =/= A <-> -. A = 0 )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							sylib | 
							 |-  ( ( A e. RR* /\ A < 0 ) -> -. A = 0 )  | 
						
						
							| 8 | 
							
								7
							 | 
							iffalsed | 
							 |-  ( ( A e. RR* /\ A < 0 ) -> if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) = if ( A < 0 , -u 1 , 1 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							iftrue | 
							 |-  ( A < 0 -> if ( A < 0 , -u 1 , 1 ) = -u 1 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							 |-  ( ( A e. RR* /\ A < 0 ) -> if ( A < 0 , -u 1 , 1 ) = -u 1 )  | 
						
						
							| 11 | 
							
								2 8 10
							 | 
							3eqtrd | 
							 |-  ( ( A e. RR* /\ A < 0 ) -> ( sgn ` A ) = -u 1 )  |