| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( x = A -> ( x = 0 <-> A = 0 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							breq1 | 
							 |-  ( x = A -> ( x < 0 <-> A < 0 ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							ifbid | 
							 |-  ( x = A -> if ( x < 0 , -u 1 , 1 ) = if ( A < 0 , -u 1 , 1 ) )  | 
						
						
							| 4 | 
							
								1 3
							 | 
							ifbieq2d | 
							 |-  ( x = A -> if ( x = 0 , 0 , if ( x < 0 , -u 1 , 1 ) ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-sgn | 
							 |-  sgn = ( x e. RR* |-> if ( x = 0 , 0 , if ( x < 0 , -u 1 , 1 ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							c0ex | 
							 |-  0 e. _V  | 
						
						
							| 7 | 
							
								
							 | 
							negex | 
							 |-  -u 1 e. _V  | 
						
						
							| 8 | 
							
								
							 | 
							1ex | 
							 |-  1 e. _V  | 
						
						
							| 9 | 
							
								7 8
							 | 
							ifex | 
							 |-  if ( A < 0 , -u 1 , 1 ) e. _V  | 
						
						
							| 10 | 
							
								6 9
							 | 
							ifex | 
							 |-  if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) e. _V  | 
						
						
							| 11 | 
							
								4 5 10
							 | 
							fvmpt | 
							 |-  ( A e. RR* -> ( sgn ` A ) = if ( A = 0 , 0 , if ( A < 0 , -u 1 , 1 ) ) )  |