Step |
Hyp |
Ref |
Expression |
1 |
|
sbgoldbb |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) ) |
2 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
3 |
|
evenz |
|- ( N e. Even -> N e. ZZ ) |
4 |
3
|
zred |
|- ( N e. Even -> N e. RR ) |
5 |
|
4lt6 |
|- 4 < 6 |
6 |
|
4re |
|- 4 e. RR |
7 |
|
6re |
|- 6 e. RR |
8 |
|
ltletr |
|- ( ( 4 e. RR /\ 6 e. RR /\ N e. RR ) -> ( ( 4 < 6 /\ 6 <_ N ) -> 4 < N ) ) |
9 |
6 7 8
|
mp3an12 |
|- ( N e. RR -> ( ( 4 < 6 /\ 6 <_ N ) -> 4 < N ) ) |
10 |
5 9
|
mpani |
|- ( N e. RR -> ( 6 <_ N -> 4 < N ) ) |
11 |
4 10
|
syl |
|- ( N e. Even -> ( 6 <_ N -> 4 < N ) ) |
12 |
11
|
imp |
|- ( ( N e. Even /\ 6 <_ N ) -> 4 < N ) |
13 |
2 12
|
eqbrtrid |
|- ( ( N e. Even /\ 6 <_ N ) -> ( 2 + 2 ) < N ) |
14 |
|
2re |
|- 2 e. RR |
15 |
14
|
a1i |
|- ( ( N e. Even /\ 6 <_ N ) -> 2 e. RR ) |
16 |
4
|
adantr |
|- ( ( N e. Even /\ 6 <_ N ) -> N e. RR ) |
17 |
15 15 16
|
ltaddsub2d |
|- ( ( N e. Even /\ 6 <_ N ) -> ( ( 2 + 2 ) < N <-> 2 < ( N - 2 ) ) ) |
18 |
13 17
|
mpbid |
|- ( ( N e. Even /\ 6 <_ N ) -> 2 < ( N - 2 ) ) |
19 |
|
2evenALTV |
|- 2 e. Even |
20 |
|
emee |
|- ( ( N e. Even /\ 2 e. Even ) -> ( N - 2 ) e. Even ) |
21 |
19 20
|
mpan2 |
|- ( N e. Even -> ( N - 2 ) e. Even ) |
22 |
|
breq2 |
|- ( n = ( N - 2 ) -> ( 2 < n <-> 2 < ( N - 2 ) ) ) |
23 |
|
eqeq1 |
|- ( n = ( N - 2 ) -> ( n = ( p + q ) <-> ( N - 2 ) = ( p + q ) ) ) |
24 |
23
|
2rexbidv |
|- ( n = ( N - 2 ) -> ( E. p e. Prime E. q e. Prime n = ( p + q ) <-> E. p e. Prime E. q e. Prime ( N - 2 ) = ( p + q ) ) ) |
25 |
22 24
|
imbi12d |
|- ( n = ( N - 2 ) -> ( ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) <-> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime ( N - 2 ) = ( p + q ) ) ) ) |
26 |
25
|
rspcv |
|- ( ( N - 2 ) e. Even -> ( A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime ( N - 2 ) = ( p + q ) ) ) ) |
27 |
|
2prm |
|- 2 e. Prime |
28 |
27
|
a1i |
|- ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> 2 e. Prime ) |
29 |
|
oveq2 |
|- ( r = 2 -> ( ( p + q ) + r ) = ( ( p + q ) + 2 ) ) |
30 |
29
|
eqeq2d |
|- ( r = 2 -> ( N = ( ( p + q ) + r ) <-> N = ( ( p + q ) + 2 ) ) ) |
31 |
30
|
adantl |
|- ( ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) /\ r = 2 ) -> ( N = ( ( p + q ) + r ) <-> N = ( ( p + q ) + 2 ) ) ) |
32 |
3
|
zcnd |
|- ( N e. Even -> N e. CC ) |
33 |
|
2cnd |
|- ( N e. Even -> 2 e. CC ) |
34 |
|
npcan |
|- ( ( N e. CC /\ 2 e. CC ) -> ( ( N - 2 ) + 2 ) = N ) |
35 |
34
|
eqcomd |
|- ( ( N e. CC /\ 2 e. CC ) -> N = ( ( N - 2 ) + 2 ) ) |
36 |
32 33 35
|
syl2anc |
|- ( N e. Even -> N = ( ( N - 2 ) + 2 ) ) |
37 |
36
|
adantr |
|- ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> N = ( ( N - 2 ) + 2 ) ) |
38 |
|
simpr |
|- ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> ( N - 2 ) = ( p + q ) ) |
39 |
38
|
oveq1d |
|- ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> ( ( N - 2 ) + 2 ) = ( ( p + q ) + 2 ) ) |
40 |
37 39
|
eqtrd |
|- ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> N = ( ( p + q ) + 2 ) ) |
41 |
28 31 40
|
rspcedvd |
|- ( ( N e. Even /\ ( N - 2 ) = ( p + q ) ) -> E. r e. Prime N = ( ( p + q ) + r ) ) |
42 |
41
|
ex |
|- ( N e. Even -> ( ( N - 2 ) = ( p + q ) -> E. r e. Prime N = ( ( p + q ) + r ) ) ) |
43 |
42
|
reximdv |
|- ( N e. Even -> ( E. q e. Prime ( N - 2 ) = ( p + q ) -> E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) |
44 |
43
|
reximdv |
|- ( N e. Even -> ( E. p e. Prime E. q e. Prime ( N - 2 ) = ( p + q ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) |
45 |
44
|
imim2d |
|- ( N e. Even -> ( ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime ( N - 2 ) = ( p + q ) ) -> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) ) |
46 |
26 45
|
syl9r |
|- ( N e. Even -> ( ( N - 2 ) e. Even -> ( A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) ) ) |
47 |
21 46
|
mpd |
|- ( N e. Even -> ( A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) ) |
48 |
47
|
adantr |
|- ( ( N e. Even /\ 6 <_ N ) -> ( A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> ( 2 < ( N - 2 ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) ) |
49 |
18 48
|
mpid |
|- ( ( N e. Even /\ 6 <_ N ) -> ( A. n e. Even ( 2 < n -> E. p e. Prime E. q e. Prime n = ( p + q ) ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) |
50 |
1 49
|
syl5com |
|- ( A. n e. Even ( 4 < n -> n e. GoldbachEven ) -> ( ( N e. Even /\ 6 <_ N ) -> E. p e. Prime E. q e. Prime E. r e. Prime N = ( ( p + q ) + r ) ) ) |