Description: The induced metric on a subgroup in terms of the induced metric on the parent normed group. (Contributed by NM, 1-Feb-2008) (Revised by AV, 19-Oct-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sgrim.x | |- X = ( T |`s U ) |
|
sgrim.d | |- D = ( dist ` T ) |
||
sgrim.e | |- E = ( dist ` X ) |
||
sgrimval.t | |- T = ( G toNrmGrp N ) |
||
sgrimval.n | |- N = ( norm ` G ) |
||
sgrimval.s | |- S = ( SubGrp ` T ) |
||
Assertion | sgrimval | |- ( ( ( G e. NrmGrp /\ U e. S ) /\ ( A e. U /\ B e. U ) ) -> ( A E B ) = ( A D B ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sgrim.x | |- X = ( T |`s U ) |
|
2 | sgrim.d | |- D = ( dist ` T ) |
|
3 | sgrim.e | |- E = ( dist ` X ) |
|
4 | sgrimval.t | |- T = ( G toNrmGrp N ) |
|
5 | sgrimval.n | |- N = ( norm ` G ) |
|
6 | sgrimval.s | |- S = ( SubGrp ` T ) |
|
7 | 1 2 3 | sgrim | |- ( U e. S -> E = D ) |
8 | 7 | oveqd | |- ( U e. S -> ( A E B ) = ( A D B ) ) |
9 | 8 | ad2antlr | |- ( ( ( G e. NrmGrp /\ U e. S ) /\ ( A e. U /\ B e. U ) ) -> ( A E B ) = ( A D B ) ) |