Description: The induced metric on a subgroup in terms of the induced metric on the parent normed group. (Contributed by NM, 1-Feb-2008) (Revised by AV, 19-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sgrim.x | |- X = ( T |`s U ) | |
| sgrim.d | |- D = ( dist ` T ) | ||
| sgrim.e | |- E = ( dist ` X ) | ||
| sgrimval.t | |- T = ( G toNrmGrp N ) | ||
| sgrimval.n | |- N = ( norm ` G ) | ||
| sgrimval.s | |- S = ( SubGrp ` T ) | ||
| Assertion | sgrimval | |- ( ( ( G e. NrmGrp /\ U e. S ) /\ ( A e. U /\ B e. U ) ) -> ( A E B ) = ( A D B ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sgrim.x | |- X = ( T |`s U ) | |
| 2 | sgrim.d | |- D = ( dist ` T ) | |
| 3 | sgrim.e | |- E = ( dist ` X ) | |
| 4 | sgrimval.t | |- T = ( G toNrmGrp N ) | |
| 5 | sgrimval.n | |- N = ( norm ` G ) | |
| 6 | sgrimval.s | |- S = ( SubGrp ` T ) | |
| 7 | 1 2 3 | sgrim | |- ( U e. S -> E = D ) | 
| 8 | 7 | oveqd | |- ( U e. S -> ( A E B ) = ( A D B ) ) | 
| 9 | 8 | ad2antlr | |- ( ( ( G e. NrmGrp /\ U e. S ) /\ ( A e. U /\ B e. U ) ) -> ( A E B ) = ( A D B ) ) |