Metamath Proof Explorer


Theorem sgrimval

Description: The induced metric on a subgroup in terms of the induced metric on the parent normed group. (Contributed by NM, 1-Feb-2008) (Revised by AV, 19-Oct-2021)

Ref Expression
Hypotheses sgrim.x
|- X = ( T |`s U )
sgrim.d
|- D = ( dist ` T )
sgrim.e
|- E = ( dist ` X )
sgrimval.t
|- T = ( G toNrmGrp N )
sgrimval.n
|- N = ( norm ` G )
sgrimval.s
|- S = ( SubGrp ` T )
Assertion sgrimval
|- ( ( ( G e. NrmGrp /\ U e. S ) /\ ( A e. U /\ B e. U ) ) -> ( A E B ) = ( A D B ) )

Proof

Step Hyp Ref Expression
1 sgrim.x
 |-  X = ( T |`s U )
2 sgrim.d
 |-  D = ( dist ` T )
3 sgrim.e
 |-  E = ( dist ` X )
4 sgrimval.t
 |-  T = ( G toNrmGrp N )
5 sgrimval.n
 |-  N = ( norm ` G )
6 sgrimval.s
 |-  S = ( SubGrp ` T )
7 1 2 3 sgrim
 |-  ( U e. S -> E = D )
8 7 oveqd
 |-  ( U e. S -> ( A E B ) = ( A D B ) )
9 8 ad2antlr
 |-  ( ( ( G e. NrmGrp /\ U e. S ) /\ ( A e. U /\ B e. U ) ) -> ( A E B ) = ( A D B ) )