Step |
Hyp |
Ref |
Expression |
1 |
|
mgm0b |
|- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm |
2 |
|
ral0 |
|- A. x e. (/) A. y e. (/) A. z e. (/) ( ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) y ) ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) = ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ( y ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) ) |
3 |
|
0ex |
|- (/) e. _V |
4 |
|
eqid |
|- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } = { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } |
5 |
4
|
grpbase |
|- ( (/) e. _V -> (/) = ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ) |
6 |
3 5
|
ax-mp |
|- (/) = ( Base ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) |
7 |
|
eqid |
|- ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) = ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) |
8 |
6 7
|
issgrp |
|- ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp <-> ( { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Mgm /\ A. x e. (/) A. y e. (/) A. z e. (/) ( ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) y ) ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) = ( x ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) ( y ( +g ` { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } ) z ) ) ) ) |
9 |
1 2 8
|
mpbir2an |
|- { <. ( Base ` ndx ) , (/) >. , <. ( +g ` ndx ) , O >. } e. Smgrp |