Step |
Hyp |
Ref |
Expression |
1 |
|
sgrpidmnd.b |
|- B = ( Base ` G ) |
2 |
|
sgrpidmnd.0 |
|- .0. = ( 0g ` G ) |
3 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
4 |
1 3 2
|
grpidval |
|- .0. = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) |
5 |
4
|
eqeq2i |
|- ( e = .0. <-> e = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) ) |
6 |
|
eleq1w |
|- ( y = e -> ( y e. B <-> e e. B ) ) |
7 |
|
oveq1 |
|- ( y = e -> ( y ( +g ` G ) x ) = ( e ( +g ` G ) x ) ) |
8 |
7
|
eqeq1d |
|- ( y = e -> ( ( y ( +g ` G ) x ) = x <-> ( e ( +g ` G ) x ) = x ) ) |
9 |
8
|
ovanraleqv |
|- ( y = e -> ( A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) <-> A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) |
10 |
6 9
|
anbi12d |
|- ( y = e -> ( ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) <-> ( e e. B /\ A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) ) |
11 |
10
|
iotan0 |
|- ( ( e e. B /\ e =/= (/) /\ e = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) ) -> ( e e. B /\ A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) |
12 |
|
rsp |
|- ( A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) |
13 |
11 12
|
simpl2im |
|- ( ( e e. B /\ e =/= (/) /\ e = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) ) -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) |
14 |
13
|
3expb |
|- ( ( e e. B /\ ( e =/= (/) /\ e = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) ) ) -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) |
15 |
14
|
expcom |
|- ( ( e =/= (/) /\ e = ( iota y ( y e. B /\ A. x e. B ( ( y ( +g ` G ) x ) = x /\ ( x ( +g ` G ) y ) = x ) ) ) ) -> ( e e. B -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) ) |
16 |
5 15
|
sylan2b |
|- ( ( e =/= (/) /\ e = .0. ) -> ( e e. B -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) ) |
17 |
16
|
impcom |
|- ( ( e e. B /\ ( e =/= (/) /\ e = .0. ) ) -> ( x e. B -> ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) |
18 |
17
|
ralrimiv |
|- ( ( e e. B /\ ( e =/= (/) /\ e = .0. ) ) -> A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) |
19 |
18
|
ex |
|- ( e e. B -> ( ( e =/= (/) /\ e = .0. ) -> A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) |
20 |
19
|
reximia |
|- ( E. e e. B ( e =/= (/) /\ e = .0. ) -> E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) |
21 |
20
|
anim2i |
|- ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) |
22 |
1 3
|
ismnddef |
|- ( G e. Mnd <-> ( G e. Smgrp /\ E. e e. B A. x e. B ( ( e ( +g ` G ) x ) = x /\ ( x ( +g ` G ) e ) = x ) ) ) |
23 |
21 22
|
sylibr |
|- ( ( G e. Smgrp /\ E. e e. B ( e =/= (/) /\ e = .0. ) ) -> G e. Mnd ) |