Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | sgrpmgm | |- ( M e. Smgrp -> M e. Mgm ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
2 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
3 | 1 2 | issgrp | |- ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) ) |
4 | 3 | simplbi | |- ( M e. Smgrp -> M e. Mgm ) |