Metamath Proof Explorer


Theorem sgrpmgm

Description: A semigroup is a magma. (Contributed by FL, 2-Nov-2009) (Revised by AV, 6-Jan-2020)

Ref Expression
Assertion sgrpmgm
|- ( M e. Smgrp -> M e. Mgm )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Base ` M ) = ( Base ` M )
2 eqid
 |-  ( +g ` M ) = ( +g ` M )
3 1 2 issgrp
 |-  ( M e. Smgrp <-> ( M e. Mgm /\ A. x e. ( Base ` M ) A. y e. ( Base ` M ) A. z e. ( Base ` M ) ( ( x ( +g ` M ) y ) ( +g ` M ) z ) = ( x ( +g ` M ) ( y ( +g ` M ) z ) ) ) )
4 3 simplbi
 |-  ( M e. Smgrp -> M e. Mgm )