Metamath Proof Explorer


Theorem sh0

Description: The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999) (Revised by Mario Carneiro, 23-Dec-2013) (New usage is discouraged.)

Ref Expression
Assertion sh0
|- ( H e. SH -> 0h e. H )

Proof

Step Hyp Ref Expression
1 issh
 |-  ( H e. SH <-> ( ( H C_ ~H /\ 0h e. H ) /\ ( ( +h " ( H X. H ) ) C_ H /\ ( .h " ( CC X. H ) ) C_ H ) ) )
2 1 simplbi
 |-  ( H e. SH -> ( H C_ ~H /\ 0h e. H ) )
3 2 simprd
 |-  ( H e. SH -> 0h e. H )