Description: The zero subspace is the smallest subspace. (Contributed by NM, 3-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sh0le | |- ( A e. SH -> 0H C_ A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ch0 | |- 0H = { 0h } |
|
2 | sh0 | |- ( A e. SH -> 0h e. A ) |
|
3 | 2 | snssd | |- ( A e. SH -> { 0h } C_ A ) |
4 | 1 3 | eqsstrid | |- ( A e. SH -> 0H C_ A ) |