Metamath Proof Explorer


Theorem sh1dle

Description: A 1-dimensional subspace is less than or equal to any subspace containing its generating vector. (Contributed by NM, 24-Nov-2004) (New usage is discouraged.)

Ref Expression
Assertion sh1dle
|- ( ( A e. SH /\ B e. A ) -> ( _|_ ` ( _|_ ` { B } ) ) C_ A )

Proof

Step Hyp Ref Expression
1 shel
 |-  ( ( A e. SH /\ B e. A ) -> B e. ~H )
2 spansn
 |-  ( B e. ~H -> ( span ` { B } ) = ( _|_ ` ( _|_ ` { B } ) ) )
3 1 2 syl
 |-  ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) = ( _|_ ` ( _|_ ` { B } ) ) )
4 spansnss
 |-  ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) C_ A )
5 3 4 eqsstrrd
 |-  ( ( A e. SH /\ B e. A ) -> ( _|_ ` ( _|_ ` { B } ) ) C_ A )