Description: A 1-dimensional subspace is less than or equal to any subspace containing its generating vector. (Contributed by NM, 24-Nov-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | sh1dle | |- ( ( A e. SH /\ B e. A ) -> ( _|_ ` ( _|_ ` { B } ) ) C_ A ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shel | |- ( ( A e. SH /\ B e. A ) -> B e. ~H ) |
|
2 | spansn | |- ( B e. ~H -> ( span ` { B } ) = ( _|_ ` ( _|_ ` { B } ) ) ) |
|
3 | 1 2 | syl | |- ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) = ( _|_ ` ( _|_ ` { B } ) ) ) |
4 | spansnss | |- ( ( A e. SH /\ B e. A ) -> ( span ` { B } ) C_ A ) |
|
5 | 3 4 | eqsstrrd | |- ( ( A e. SH /\ B e. A ) -> ( _|_ ` ( _|_ ` { B } ) ) C_ A ) |