| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sharhght.sigar |
|- G = ( x e. CC , y e. CC |-> ( Im ` ( ( * ` x ) x. y ) ) ) |
| 2 |
|
sharhght.a |
|- ( ph -> ( A e. CC /\ B e. CC /\ C e. CC ) ) |
| 3 |
|
sharhght.b |
|- ( ph -> ( D e. CC /\ ( ( A - D ) G ( B - D ) ) = 0 ) ) |
| 4 |
2
|
simp3d |
|- ( ph -> C e. CC ) |
| 5 |
2
|
simp1d |
|- ( ph -> A e. CC ) |
| 6 |
4 5
|
subcld |
|- ( ph -> ( C - A ) e. CC ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ B = D ) -> ( C - A ) e. CC ) |
| 8 |
3
|
simpld |
|- ( ph -> D e. CC ) |
| 9 |
8 5
|
subcld |
|- ( ph -> ( D - A ) e. CC ) |
| 10 |
9
|
adantr |
|- ( ( ph /\ B = D ) -> ( D - A ) e. CC ) |
| 11 |
1
|
sigarim |
|- ( ( ( C - A ) e. CC /\ ( D - A ) e. CC ) -> ( ( C - A ) G ( D - A ) ) e. RR ) |
| 12 |
7 10 11
|
syl2anc |
|- ( ( ph /\ B = D ) -> ( ( C - A ) G ( D - A ) ) e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ph /\ B = D ) -> ( ( C - A ) G ( D - A ) ) e. CC ) |
| 14 |
13
|
mul01d |
|- ( ( ph /\ B = D ) -> ( ( ( C - A ) G ( D - A ) ) x. 0 ) = 0 ) |
| 15 |
2
|
simp2d |
|- ( ph -> B e. CC ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ B = D ) -> B e. CC ) |
| 17 |
|
simpr |
|- ( ( ph /\ B = D ) -> B = D ) |
| 18 |
16 17
|
subeq0bd |
|- ( ( ph /\ B = D ) -> ( B - D ) = 0 ) |
| 19 |
18
|
oveq2d |
|- ( ( ph /\ B = D ) -> ( ( ( C - A ) G ( D - A ) ) x. ( B - D ) ) = ( ( ( C - A ) G ( D - A ) ) x. 0 ) ) |
| 20 |
4 15
|
subcld |
|- ( ph -> ( C - B ) e. CC ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ B = D ) -> ( C - B ) e. CC ) |
| 22 |
8 15
|
subcld |
|- ( ph -> ( D - B ) e. CC ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ B = D ) -> ( D - B ) e. CC ) |
| 24 |
1
|
sigarval |
|- ( ( ( C - B ) e. CC /\ ( D - B ) e. CC ) -> ( ( C - B ) G ( D - B ) ) = ( Im ` ( ( * ` ( C - B ) ) x. ( D - B ) ) ) ) |
| 25 |
21 23 24
|
syl2anc |
|- ( ( ph /\ B = D ) -> ( ( C - B ) G ( D - B ) ) = ( Im ` ( ( * ` ( C - B ) ) x. ( D - B ) ) ) ) |
| 26 |
8
|
adantr |
|- ( ( ph /\ B = D ) -> D e. CC ) |
| 27 |
17
|
eqcomd |
|- ( ( ph /\ B = D ) -> D = B ) |
| 28 |
26 27
|
subeq0bd |
|- ( ( ph /\ B = D ) -> ( D - B ) = 0 ) |
| 29 |
28
|
oveq2d |
|- ( ( ph /\ B = D ) -> ( ( * ` ( C - B ) ) x. ( D - B ) ) = ( ( * ` ( C - B ) ) x. 0 ) ) |
| 30 |
21
|
cjcld |
|- ( ( ph /\ B = D ) -> ( * ` ( C - B ) ) e. CC ) |
| 31 |
30
|
mul01d |
|- ( ( ph /\ B = D ) -> ( ( * ` ( C - B ) ) x. 0 ) = 0 ) |
| 32 |
29 31
|
eqtrd |
|- ( ( ph /\ B = D ) -> ( ( * ` ( C - B ) ) x. ( D - B ) ) = 0 ) |
| 33 |
32
|
fveq2d |
|- ( ( ph /\ B = D ) -> ( Im ` ( ( * ` ( C - B ) ) x. ( D - B ) ) ) = ( Im ` 0 ) ) |
| 34 |
|
0red |
|- ( ( ph /\ B = D ) -> 0 e. RR ) |
| 35 |
34
|
reim0d |
|- ( ( ph /\ B = D ) -> ( Im ` 0 ) = 0 ) |
| 36 |
25 33 35
|
3eqtrd |
|- ( ( ph /\ B = D ) -> ( ( C - B ) G ( D - B ) ) = 0 ) |
| 37 |
36
|
oveq1d |
|- ( ( ph /\ B = D ) -> ( ( ( C - B ) G ( D - B ) ) x. ( A - D ) ) = ( 0 x. ( A - D ) ) ) |
| 38 |
5
|
adantr |
|- ( ( ph /\ B = D ) -> A e. CC ) |
| 39 |
38 26
|
subcld |
|- ( ( ph /\ B = D ) -> ( A - D ) e. CC ) |
| 40 |
39
|
mul02d |
|- ( ( ph /\ B = D ) -> ( 0 x. ( A - D ) ) = 0 ) |
| 41 |
37 40
|
eqtrd |
|- ( ( ph /\ B = D ) -> ( ( ( C - B ) G ( D - B ) ) x. ( A - D ) ) = 0 ) |
| 42 |
14 19 41
|
3eqtr4d |
|- ( ( ph /\ B = D ) -> ( ( ( C - A ) G ( D - A ) ) x. ( B - D ) ) = ( ( ( C - B ) G ( D - B ) ) x. ( A - D ) ) ) |
| 43 |
4
|
adantr |
|- ( ( ph /\ -. B = D ) -> C e. CC ) |
| 44 |
15
|
adantr |
|- ( ( ph /\ -. B = D ) -> B e. CC ) |
| 45 |
5
|
adantr |
|- ( ( ph /\ -. B = D ) -> A e. CC ) |
| 46 |
43 44 45
|
npncand |
|- ( ( ph /\ -. B = D ) -> ( ( C - B ) + ( B - A ) ) = ( C - A ) ) |
| 47 |
46
|
oveq1d |
|- ( ( ph /\ -. B = D ) -> ( ( ( C - B ) + ( B - A ) ) G ( D - A ) ) = ( ( C - A ) G ( D - A ) ) ) |
| 48 |
43 44
|
subcld |
|- ( ( ph /\ -. B = D ) -> ( C - B ) e. CC ) |
| 49 |
9
|
adantr |
|- ( ( ph /\ -. B = D ) -> ( D - A ) e. CC ) |
| 50 |
44 45
|
subcld |
|- ( ( ph /\ -. B = D ) -> ( B - A ) e. CC ) |
| 51 |
1
|
sigaraf |
|- ( ( ( C - B ) e. CC /\ ( D - A ) e. CC /\ ( B - A ) e. CC ) -> ( ( ( C - B ) + ( B - A ) ) G ( D - A ) ) = ( ( ( C - B ) G ( D - A ) ) + ( ( B - A ) G ( D - A ) ) ) ) |
| 52 |
48 49 50 51
|
syl3anc |
|- ( ( ph /\ -. B = D ) -> ( ( ( C - B ) + ( B - A ) ) G ( D - A ) ) = ( ( ( C - B ) G ( D - A ) ) + ( ( B - A ) G ( D - A ) ) ) ) |
| 53 |
47 52
|
eqtr3d |
|- ( ( ph /\ -. B = D ) -> ( ( C - A ) G ( D - A ) ) = ( ( ( C - B ) G ( D - A ) ) + ( ( B - A ) G ( D - A ) ) ) ) |
| 54 |
3
|
simprd |
|- ( ph -> ( ( A - D ) G ( B - D ) ) = 0 ) |
| 55 |
54
|
adantr |
|- ( ( ph /\ -. B = D ) -> ( ( A - D ) G ( B - D ) ) = 0 ) |
| 56 |
8
|
adantr |
|- ( ( ph /\ -. B = D ) -> D e. CC ) |
| 57 |
1
|
sigarperm |
|- ( ( A e. CC /\ B e. CC /\ D e. CC ) -> ( ( A - D ) G ( B - D ) ) = ( ( B - A ) G ( D - A ) ) ) |
| 58 |
45 44 56 57
|
syl3anc |
|- ( ( ph /\ -. B = D ) -> ( ( A - D ) G ( B - D ) ) = ( ( B - A ) G ( D - A ) ) ) |
| 59 |
55 58
|
eqtr3d |
|- ( ( ph /\ -. B = D ) -> 0 = ( ( B - A ) G ( D - A ) ) ) |
| 60 |
59
|
oveq2d |
|- ( ( ph /\ -. B = D ) -> ( ( ( C - B ) G ( D - A ) ) + 0 ) = ( ( ( C - B ) G ( D - A ) ) + ( ( B - A ) G ( D - A ) ) ) ) |
| 61 |
1
|
sigarim |
|- ( ( ( C - B ) e. CC /\ ( D - A ) e. CC ) -> ( ( C - B ) G ( D - A ) ) e. RR ) |
| 62 |
48 49 61
|
syl2anc |
|- ( ( ph /\ -. B = D ) -> ( ( C - B ) G ( D - A ) ) e. RR ) |
| 63 |
62
|
recnd |
|- ( ( ph /\ -. B = D ) -> ( ( C - B ) G ( D - A ) ) e. CC ) |
| 64 |
63
|
addridd |
|- ( ( ph /\ -. B = D ) -> ( ( ( C - B ) G ( D - A ) ) + 0 ) = ( ( C - B ) G ( D - A ) ) ) |
| 65 |
53 60 64
|
3eqtr2d |
|- ( ( ph /\ -. B = D ) -> ( ( C - A ) G ( D - A ) ) = ( ( C - B ) G ( D - A ) ) ) |
| 66 |
44 56
|
negsubdi2d |
|- ( ( ph /\ -. B = D ) -> -u ( B - D ) = ( D - B ) ) |
| 67 |
66
|
eqcomd |
|- ( ( ph /\ -. B = D ) -> ( D - B ) = -u ( B - D ) ) |
| 68 |
67
|
oveq1d |
|- ( ( ph /\ -. B = D ) -> ( ( D - B ) / ( B - D ) ) = ( -u ( B - D ) / ( B - D ) ) ) |
| 69 |
44 56
|
subcld |
|- ( ( ph /\ -. B = D ) -> ( B - D ) e. CC ) |
| 70 |
|
simpr |
|- ( ( ph /\ -. B = D ) -> -. B = D ) |
| 71 |
70
|
neqned |
|- ( ( ph /\ -. B = D ) -> B =/= D ) |
| 72 |
44 56 71
|
subne0d |
|- ( ( ph /\ -. B = D ) -> ( B - D ) =/= 0 ) |
| 73 |
69 69 72
|
divnegd |
|- ( ( ph /\ -. B = D ) -> -u ( ( B - D ) / ( B - D ) ) = ( -u ( B - D ) / ( B - D ) ) ) |
| 74 |
69 72
|
dividd |
|- ( ( ph /\ -. B = D ) -> ( ( B - D ) / ( B - D ) ) = 1 ) |
| 75 |
74
|
negeqd |
|- ( ( ph /\ -. B = D ) -> -u ( ( B - D ) / ( B - D ) ) = -u 1 ) |
| 76 |
68 73 75
|
3eqtr2d |
|- ( ( ph /\ -. B = D ) -> ( ( D - B ) / ( B - D ) ) = -u 1 ) |
| 77 |
76
|
oveq1d |
|- ( ( ph /\ -. B = D ) -> ( ( ( D - B ) / ( B - D ) ) x. ( A - D ) ) = ( -u 1 x. ( A - D ) ) ) |
| 78 |
45 56
|
subcld |
|- ( ( ph /\ -. B = D ) -> ( A - D ) e. CC ) |
| 79 |
78
|
mulm1d |
|- ( ( ph /\ -. B = D ) -> ( -u 1 x. ( A - D ) ) = -u ( A - D ) ) |
| 80 |
45 56
|
negsubdi2d |
|- ( ( ph /\ -. B = D ) -> -u ( A - D ) = ( D - A ) ) |
| 81 |
77 79 80
|
3eqtrd |
|- ( ( ph /\ -. B = D ) -> ( ( ( D - B ) / ( B - D ) ) x. ( A - D ) ) = ( D - A ) ) |
| 82 |
56 44
|
subcld |
|- ( ( ph /\ -. B = D ) -> ( D - B ) e. CC ) |
| 83 |
82 69 78 72
|
div32d |
|- ( ( ph /\ -. B = D ) -> ( ( ( D - B ) / ( B - D ) ) x. ( A - D ) ) = ( ( D - B ) x. ( ( A - D ) / ( B - D ) ) ) ) |
| 84 |
81 83
|
eqtr3d |
|- ( ( ph /\ -. B = D ) -> ( D - A ) = ( ( D - B ) x. ( ( A - D ) / ( B - D ) ) ) ) |
| 85 |
84
|
oveq2d |
|- ( ( ph /\ -. B = D ) -> ( ( C - B ) G ( D - A ) ) = ( ( C - B ) G ( ( D - B ) x. ( ( A - D ) / ( B - D ) ) ) ) ) |
| 86 |
56 45 44
|
3jca |
|- ( ( ph /\ -. B = D ) -> ( D e. CC /\ A e. CC /\ B e. CC ) ) |
| 87 |
1 86 70 55
|
sigardiv |
|- ( ( ph /\ -. B = D ) -> ( ( A - D ) / ( B - D ) ) e. RR ) |
| 88 |
1
|
sigarls |
|- ( ( ( C - B ) e. CC /\ ( D - B ) e. CC /\ ( ( A - D ) / ( B - D ) ) e. RR ) -> ( ( C - B ) G ( ( D - B ) x. ( ( A - D ) / ( B - D ) ) ) ) = ( ( ( C - B ) G ( D - B ) ) x. ( ( A - D ) / ( B - D ) ) ) ) |
| 89 |
48 82 87 88
|
syl3anc |
|- ( ( ph /\ -. B = D ) -> ( ( C - B ) G ( ( D - B ) x. ( ( A - D ) / ( B - D ) ) ) ) = ( ( ( C - B ) G ( D - B ) ) x. ( ( A - D ) / ( B - D ) ) ) ) |
| 90 |
65 85 89
|
3eqtrd |
|- ( ( ph /\ -. B = D ) -> ( ( C - A ) G ( D - A ) ) = ( ( ( C - B ) G ( D - B ) ) x. ( ( A - D ) / ( B - D ) ) ) ) |
| 91 |
90
|
oveq1d |
|- ( ( ph /\ -. B = D ) -> ( ( ( C - A ) G ( D - A ) ) x. ( B - D ) ) = ( ( ( ( C - B ) G ( D - B ) ) x. ( ( A - D ) / ( B - D ) ) ) x. ( B - D ) ) ) |
| 92 |
1
|
sigarim |
|- ( ( ( C - B ) e. CC /\ ( D - B ) e. CC ) -> ( ( C - B ) G ( D - B ) ) e. RR ) |
| 93 |
92
|
recnd |
|- ( ( ( C - B ) e. CC /\ ( D - B ) e. CC ) -> ( ( C - B ) G ( D - B ) ) e. CC ) |
| 94 |
48 82 93
|
syl2anc |
|- ( ( ph /\ -. B = D ) -> ( ( C - B ) G ( D - B ) ) e. CC ) |
| 95 |
78 69 72
|
divcld |
|- ( ( ph /\ -. B = D ) -> ( ( A - D ) / ( B - D ) ) e. CC ) |
| 96 |
94 95 69
|
mulassd |
|- ( ( ph /\ -. B = D ) -> ( ( ( ( C - B ) G ( D - B ) ) x. ( ( A - D ) / ( B - D ) ) ) x. ( B - D ) ) = ( ( ( C - B ) G ( D - B ) ) x. ( ( ( A - D ) / ( B - D ) ) x. ( B - D ) ) ) ) |
| 97 |
78 69 72
|
divcan1d |
|- ( ( ph /\ -. B = D ) -> ( ( ( A - D ) / ( B - D ) ) x. ( B - D ) ) = ( A - D ) ) |
| 98 |
97
|
oveq2d |
|- ( ( ph /\ -. B = D ) -> ( ( ( C - B ) G ( D - B ) ) x. ( ( ( A - D ) / ( B - D ) ) x. ( B - D ) ) ) = ( ( ( C - B ) G ( D - B ) ) x. ( A - D ) ) ) |
| 99 |
91 96 98
|
3eqtrd |
|- ( ( ph /\ -. B = D ) -> ( ( ( C - A ) G ( D - A ) ) x. ( B - D ) ) = ( ( ( C - B ) G ( D - B ) ) x. ( A - D ) ) ) |
| 100 |
42 99
|
pm2.61dan |
|- ( ph -> ( ( ( C - A ) G ( D - A ) ) x. ( B - D ) ) = ( ( ( C - B ) G ( D - B ) ) x. ( A - D ) ) ) |