Description: A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | shssi.1 | |- H e. SH  | 
					|
| sheli.1 | |- A e. H  | 
					||
| Assertion | shelii | |- A e. ~H  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | shssi.1 | |- H e. SH  | 
						|
| 2 | sheli.1 | |- A e. H  | 
						|
| 3 | 1 | shssii | |- H C_ ~H  | 
						
| 4 | 3 2 | sselii | |- A e. ~H  |