Metamath Proof Explorer


Theorem shex

Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shex
|- SH e. _V

Proof

Step Hyp Ref Expression
1 ax-hilex
 |-  ~H e. _V
2 1 pwex
 |-  ~P ~H e. _V
3 shss
 |-  ( x e. SH -> x C_ ~H )
4 velpw
 |-  ( x e. ~P ~H <-> x C_ ~H )
5 3 4 sylibr
 |-  ( x e. SH -> x e. ~P ~H )
6 5 ssriv
 |-  SH C_ ~P ~H
7 2 6 ssexi
 |-  SH e. _V