Description: The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shex | |- SH e. _V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hilex | |- ~H e. _V |
|
2 | 1 | pwex | |- ~P ~H e. _V |
3 | shss | |- ( x e. SH -> x C_ ~H ) |
|
4 | velpw | |- ( x e. ~P ~H <-> x C_ ~H ) |
|
5 | 3 4 | sylibr | |- ( x e. SH -> x e. ~P ~H ) |
6 | 5 | ssriv | |- SH C_ ~P ~H |
7 | 2 6 | ssexi | |- SH e. _V |