Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
|- F e. _V |
2 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
3 |
1
|
2shfti |
|- ( ( A e. CC /\ -u A e. CC ) -> ( ( F shift A ) shift -u A ) = ( F shift ( A + -u A ) ) ) |
4 |
2 3
|
mpdan |
|- ( A e. CC -> ( ( F shift A ) shift -u A ) = ( F shift ( A + -u A ) ) ) |
5 |
|
negid |
|- ( A e. CC -> ( A + -u A ) = 0 ) |
6 |
5
|
oveq2d |
|- ( A e. CC -> ( F shift ( A + -u A ) ) = ( F shift 0 ) ) |
7 |
4 6
|
eqtrd |
|- ( A e. CC -> ( ( F shift A ) shift -u A ) = ( F shift 0 ) ) |
8 |
7
|
fveq1d |
|- ( A e. CC -> ( ( ( F shift A ) shift -u A ) ` B ) = ( ( F shift 0 ) ` B ) ) |
9 |
1
|
shftidt |
|- ( B e. CC -> ( ( F shift 0 ) ` B ) = ( F ` B ) ) |
10 |
8 9
|
sylan9eq |
|- ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift A ) shift -u A ) ` B ) = ( F ` B ) ) |