| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 |  |-  F e. _V | 
						
							| 2 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 3 | 1 | 2shfti |  |-  ( ( A e. CC /\ -u A e. CC ) -> ( ( F shift A ) shift -u A ) = ( F shift ( A + -u A ) ) ) | 
						
							| 4 | 2 3 | mpdan |  |-  ( A e. CC -> ( ( F shift A ) shift -u A ) = ( F shift ( A + -u A ) ) ) | 
						
							| 5 |  | negid |  |-  ( A e. CC -> ( A + -u A ) = 0 ) | 
						
							| 6 | 5 | oveq2d |  |-  ( A e. CC -> ( F shift ( A + -u A ) ) = ( F shift 0 ) ) | 
						
							| 7 | 4 6 | eqtrd |  |-  ( A e. CC -> ( ( F shift A ) shift -u A ) = ( F shift 0 ) ) | 
						
							| 8 | 7 | fveq1d |  |-  ( A e. CC -> ( ( ( F shift A ) shift -u A ) ` B ) = ( ( F shift 0 ) ` B ) ) | 
						
							| 9 | 1 | shftidt |  |-  ( B e. CC -> ( ( F shift 0 ) ` B ) = ( F ` B ) ) | 
						
							| 10 | 8 9 | sylan9eq |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift A ) shift -u A ) ` B ) = ( F ` B ) ) |