| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 |  |-  F e. _V | 
						
							| 2 |  | negneg |  |-  ( A e. CC -> -u -u A = A ) | 
						
							| 3 | 2 | adantr |  |-  ( ( A e. CC /\ B e. CC ) -> -u -u A = A ) | 
						
							| 4 | 3 | oveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift -u A ) shift -u -u A ) = ( ( F shift -u A ) shift A ) ) | 
						
							| 5 | 4 | fveq1d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift -u A ) shift -u -u A ) ` B ) = ( ( ( F shift -u A ) shift A ) ` B ) ) | 
						
							| 6 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 7 | 1 | shftcan1 |  |-  ( ( -u A e. CC /\ B e. CC ) -> ( ( ( F shift -u A ) shift -u -u A ) ` B ) = ( F ` B ) ) | 
						
							| 8 | 6 7 | sylan |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift -u A ) shift -u -u A ) ` B ) = ( F ` B ) ) | 
						
							| 9 | 5 8 | eqtr3d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( ( F shift -u A ) shift A ) ` B ) = ( F ` B ) ) |