Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
|- F e. _V |
2 |
1
|
shftfval |
|- ( A e. CC -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
3 |
2
|
breqd |
|- ( A e. CC -> ( B ( F shift A ) z <-> B { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } z ) ) |
4 |
|
eleq1 |
|- ( x = B -> ( x e. CC <-> B e. CC ) ) |
5 |
|
oveq1 |
|- ( x = B -> ( x - A ) = ( B - A ) ) |
6 |
5
|
breq1d |
|- ( x = B -> ( ( x - A ) F y <-> ( B - A ) F y ) ) |
7 |
4 6
|
anbi12d |
|- ( x = B -> ( ( x e. CC /\ ( x - A ) F y ) <-> ( B e. CC /\ ( B - A ) F y ) ) ) |
8 |
|
breq2 |
|- ( y = z -> ( ( B - A ) F y <-> ( B - A ) F z ) ) |
9 |
8
|
anbi2d |
|- ( y = z -> ( ( B e. CC /\ ( B - A ) F y ) <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
10 |
|
eqid |
|- { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } |
11 |
7 9 10
|
brabg |
|- ( ( B e. CC /\ z e. _V ) -> ( B { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } z <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
12 |
11
|
elvd |
|- ( B e. CC -> ( B { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } z <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
13 |
3 12
|
sylan9bb |
|- ( ( A e. CC /\ B e. CC ) -> ( B ( F shift A ) z <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
14 |
|
ibar |
|- ( B e. CC -> ( ( B - A ) F z <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
15 |
14
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( B - A ) F z <-> ( B e. CC /\ ( B - A ) F z ) ) ) |
16 |
13 15
|
bitr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( B ( F shift A ) z <-> ( B - A ) F z ) ) |
17 |
16
|
abbidv |
|- ( ( A e. CC /\ B e. CC ) -> { z | B ( F shift A ) z } = { z | ( B - A ) F z } ) |
18 |
|
imasng |
|- ( B e. CC -> ( ( F shift A ) " { B } ) = { z | B ( F shift A ) z } ) |
19 |
18
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) " { B } ) = { z | B ( F shift A ) z } ) |
20 |
|
ovex |
|- ( B - A ) e. _V |
21 |
|
imasng |
|- ( ( B - A ) e. _V -> ( F " { ( B - A ) } ) = { z | ( B - A ) F z } ) |
22 |
20 21
|
mp1i |
|- ( ( A e. CC /\ B e. CC ) -> ( F " { ( B - A ) } ) = { z | ( B - A ) F z } ) |
23 |
17 19 22
|
3eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) " { B } ) = ( F " { ( B - A ) } ) ) |