| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 |  |-  F e. _V | 
						
							| 2 | 1 | shftfval |  |-  ( A e. CC -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) | 
						
							| 3 | 2 | breqd |  |-  ( A e. CC -> ( B ( F shift A ) z <-> B { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } z ) ) | 
						
							| 4 |  | eleq1 |  |-  ( x = B -> ( x e. CC <-> B e. CC ) ) | 
						
							| 5 |  | oveq1 |  |-  ( x = B -> ( x - A ) = ( B - A ) ) | 
						
							| 6 | 5 | breq1d |  |-  ( x = B -> ( ( x - A ) F y <-> ( B - A ) F y ) ) | 
						
							| 7 | 4 6 | anbi12d |  |-  ( x = B -> ( ( x e. CC /\ ( x - A ) F y ) <-> ( B e. CC /\ ( B - A ) F y ) ) ) | 
						
							| 8 |  | breq2 |  |-  ( y = z -> ( ( B - A ) F y <-> ( B - A ) F z ) ) | 
						
							| 9 | 8 | anbi2d |  |-  ( y = z -> ( ( B e. CC /\ ( B - A ) F y ) <-> ( B e. CC /\ ( B - A ) F z ) ) ) | 
						
							| 10 |  | eqid |  |-  { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } | 
						
							| 11 | 7 9 10 | brabg |  |-  ( ( B e. CC /\ z e. _V ) -> ( B { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } z <-> ( B e. CC /\ ( B - A ) F z ) ) ) | 
						
							| 12 | 11 | elvd |  |-  ( B e. CC -> ( B { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } z <-> ( B e. CC /\ ( B - A ) F z ) ) ) | 
						
							| 13 | 3 12 | sylan9bb |  |-  ( ( A e. CC /\ B e. CC ) -> ( B ( F shift A ) z <-> ( B e. CC /\ ( B - A ) F z ) ) ) | 
						
							| 14 |  | ibar |  |-  ( B e. CC -> ( ( B - A ) F z <-> ( B e. CC /\ ( B - A ) F z ) ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( B - A ) F z <-> ( B e. CC /\ ( B - A ) F z ) ) ) | 
						
							| 16 | 13 15 | bitr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( B ( F shift A ) z <-> ( B - A ) F z ) ) | 
						
							| 17 | 16 | abbidv |  |-  ( ( A e. CC /\ B e. CC ) -> { z | B ( F shift A ) z } = { z | ( B - A ) F z } ) | 
						
							| 18 |  | imasng |  |-  ( B e. CC -> ( ( F shift A ) " { B } ) = { z | B ( F shift A ) z } ) | 
						
							| 19 | 18 | adantl |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) " { B } ) = { z | B ( F shift A ) z } ) | 
						
							| 20 |  | ovex |  |-  ( B - A ) e. _V | 
						
							| 21 |  | imasng |  |-  ( ( B - A ) e. _V -> ( F " { ( B - A ) } ) = { z | ( B - A ) F z } ) | 
						
							| 22 | 20 21 | mp1i |  |-  ( ( A e. CC /\ B e. CC ) -> ( F " { ( B - A ) } ) = { z | ( B - A ) F z } ) | 
						
							| 23 | 17 19 22 | 3eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) " { B } ) = ( F " { ( B - A ) } ) ) |