| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 |  |-  F e. _V | 
						
							| 2 |  | relopabv |  |-  Rel { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } | 
						
							| 3 | 2 | a1i |  |-  ( ( F Fn B /\ A e. CC ) -> Rel { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) | 
						
							| 4 |  | fnfun |  |-  ( F Fn B -> Fun F ) | 
						
							| 5 | 4 | adantr |  |-  ( ( F Fn B /\ A e. CC ) -> Fun F ) | 
						
							| 6 |  | funmo |  |-  ( Fun F -> E* w ( z - A ) F w ) | 
						
							| 7 |  | vex |  |-  z e. _V | 
						
							| 8 |  | vex |  |-  w e. _V | 
						
							| 9 |  | eleq1w |  |-  ( x = z -> ( x e. CC <-> z e. CC ) ) | 
						
							| 10 |  | oveq1 |  |-  ( x = z -> ( x - A ) = ( z - A ) ) | 
						
							| 11 | 10 | breq1d |  |-  ( x = z -> ( ( x - A ) F y <-> ( z - A ) F y ) ) | 
						
							| 12 | 9 11 | anbi12d |  |-  ( x = z -> ( ( x e. CC /\ ( x - A ) F y ) <-> ( z e. CC /\ ( z - A ) F y ) ) ) | 
						
							| 13 |  | breq2 |  |-  ( y = w -> ( ( z - A ) F y <-> ( z - A ) F w ) ) | 
						
							| 14 | 13 | anbi2d |  |-  ( y = w -> ( ( z e. CC /\ ( z - A ) F y ) <-> ( z e. CC /\ ( z - A ) F w ) ) ) | 
						
							| 15 |  | eqid |  |-  { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } | 
						
							| 16 | 7 8 12 14 15 | brab |  |-  ( z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w <-> ( z e. CC /\ ( z - A ) F w ) ) | 
						
							| 17 | 16 | simprbi |  |-  ( z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w -> ( z - A ) F w ) | 
						
							| 18 | 17 | moimi |  |-  ( E* w ( z - A ) F w -> E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) | 
						
							| 19 | 6 18 | syl |  |-  ( Fun F -> E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) | 
						
							| 20 | 19 | alrimiv |  |-  ( Fun F -> A. z E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) | 
						
							| 21 | 5 20 | syl |  |-  ( ( F Fn B /\ A e. CC ) -> A. z E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) | 
						
							| 22 |  | dffun6 |  |-  ( Fun { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } <-> ( Rel { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } /\ A. z E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) ) | 
						
							| 23 | 3 21 22 | sylanbrc |  |-  ( ( F Fn B /\ A e. CC ) -> Fun { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) | 
						
							| 24 | 1 | shftfval |  |-  ( A e. CC -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) | 
						
							| 25 | 24 | adantl |  |-  ( ( F Fn B /\ A e. CC ) -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) | 
						
							| 26 | 25 | funeqd |  |-  ( ( F Fn B /\ A e. CC ) -> ( Fun ( F shift A ) <-> Fun { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) ) | 
						
							| 27 | 23 26 | mpbird |  |-  ( ( F Fn B /\ A e. CC ) -> Fun ( F shift A ) ) | 
						
							| 28 | 1 | shftdm |  |-  ( A e. CC -> dom ( F shift A ) = { x e. CC | ( x - A ) e. dom F } ) | 
						
							| 29 |  | fndm |  |-  ( F Fn B -> dom F = B ) | 
						
							| 30 | 29 | eleq2d |  |-  ( F Fn B -> ( ( x - A ) e. dom F <-> ( x - A ) e. B ) ) | 
						
							| 31 | 30 | rabbidv |  |-  ( F Fn B -> { x e. CC | ( x - A ) e. dom F } = { x e. CC | ( x - A ) e. B } ) | 
						
							| 32 | 28 31 | sylan9eqr |  |-  ( ( F Fn B /\ A e. CC ) -> dom ( F shift A ) = { x e. CC | ( x - A ) e. B } ) | 
						
							| 33 |  | df-fn |  |-  ( ( F shift A ) Fn { x e. CC | ( x - A ) e. B } <-> ( Fun ( F shift A ) /\ dom ( F shift A ) = { x e. CC | ( x - A ) e. B } ) ) | 
						
							| 34 | 27 32 33 | sylanbrc |  |-  ( ( F Fn B /\ A e. CC ) -> ( F shift A ) Fn { x e. CC | ( x - A ) e. B } ) |