Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
|- F e. _V |
2 |
|
relopabv |
|- Rel { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } |
3 |
2
|
a1i |
|- ( ( F Fn B /\ A e. CC ) -> Rel { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
4 |
|
fnfun |
|- ( F Fn B -> Fun F ) |
5 |
4
|
adantr |
|- ( ( F Fn B /\ A e. CC ) -> Fun F ) |
6 |
|
funmo |
|- ( Fun F -> E* w ( z - A ) F w ) |
7 |
|
vex |
|- z e. _V |
8 |
|
vex |
|- w e. _V |
9 |
|
eleq1w |
|- ( x = z -> ( x e. CC <-> z e. CC ) ) |
10 |
|
oveq1 |
|- ( x = z -> ( x - A ) = ( z - A ) ) |
11 |
10
|
breq1d |
|- ( x = z -> ( ( x - A ) F y <-> ( z - A ) F y ) ) |
12 |
9 11
|
anbi12d |
|- ( x = z -> ( ( x e. CC /\ ( x - A ) F y ) <-> ( z e. CC /\ ( z - A ) F y ) ) ) |
13 |
|
breq2 |
|- ( y = w -> ( ( z - A ) F y <-> ( z - A ) F w ) ) |
14 |
13
|
anbi2d |
|- ( y = w -> ( ( z e. CC /\ ( z - A ) F y ) <-> ( z e. CC /\ ( z - A ) F w ) ) ) |
15 |
|
eqid |
|- { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } |
16 |
7 8 12 14 15
|
brab |
|- ( z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w <-> ( z e. CC /\ ( z - A ) F w ) ) |
17 |
16
|
simprbi |
|- ( z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w -> ( z - A ) F w ) |
18 |
17
|
moimi |
|- ( E* w ( z - A ) F w -> E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) |
19 |
6 18
|
syl |
|- ( Fun F -> E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) |
20 |
19
|
alrimiv |
|- ( Fun F -> A. z E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) |
21 |
5 20
|
syl |
|- ( ( F Fn B /\ A e. CC ) -> A. z E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) |
22 |
|
dffun6 |
|- ( Fun { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } <-> ( Rel { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } /\ A. z E* w z { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } w ) ) |
23 |
3 21 22
|
sylanbrc |
|- ( ( F Fn B /\ A e. CC ) -> Fun { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
24 |
1
|
shftfval |
|- ( A e. CC -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
25 |
24
|
adantl |
|- ( ( F Fn B /\ A e. CC ) -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |
26 |
25
|
funeqd |
|- ( ( F Fn B /\ A e. CC ) -> ( Fun ( F shift A ) <-> Fun { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) ) |
27 |
23 26
|
mpbird |
|- ( ( F Fn B /\ A e. CC ) -> Fun ( F shift A ) ) |
28 |
1
|
shftdm |
|- ( A e. CC -> dom ( F shift A ) = { x e. CC | ( x - A ) e. dom F } ) |
29 |
|
fndm |
|- ( F Fn B -> dom F = B ) |
30 |
29
|
eleq2d |
|- ( F Fn B -> ( ( x - A ) e. dom F <-> ( x - A ) e. B ) ) |
31 |
30
|
rabbidv |
|- ( F Fn B -> { x e. CC | ( x - A ) e. dom F } = { x e. CC | ( x - A ) e. B } ) |
32 |
28 31
|
sylan9eqr |
|- ( ( F Fn B /\ A e. CC ) -> dom ( F shift A ) = { x e. CC | ( x - A ) e. B } ) |
33 |
|
df-fn |
|- ( ( F shift A ) Fn { x e. CC | ( x - A ) e. B } <-> ( Fun ( F shift A ) /\ dom ( F shift A ) = { x e. CC | ( x - A ) e. B } ) ) |
34 |
27 32 33
|
sylanbrc |
|- ( ( F Fn B /\ A e. CC ) -> ( F shift A ) Fn { x e. CC | ( x - A ) e. B } ) |