| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 |  |-  F e. _V | 
						
							| 2 |  | ovex |  |-  ( x - A ) e. _V | 
						
							| 3 |  | vex |  |-  y e. _V | 
						
							| 4 | 2 3 | breldm |  |-  ( ( x - A ) F y -> ( x - A ) e. dom F ) | 
						
							| 5 |  | npcan |  |-  ( ( x e. CC /\ A e. CC ) -> ( ( x - A ) + A ) = x ) | 
						
							| 6 | 5 | eqcomd |  |-  ( ( x e. CC /\ A e. CC ) -> x = ( ( x - A ) + A ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( A e. CC /\ x e. CC ) -> x = ( ( x - A ) + A ) ) | 
						
							| 8 |  | oveq1 |  |-  ( w = ( x - A ) -> ( w + A ) = ( ( x - A ) + A ) ) | 
						
							| 9 | 8 | rspceeqv |  |-  ( ( ( x - A ) e. dom F /\ x = ( ( x - A ) + A ) ) -> E. w e. dom F x = ( w + A ) ) | 
						
							| 10 | 4 7 9 | syl2anr |  |-  ( ( ( A e. CC /\ x e. CC ) /\ ( x - A ) F y ) -> E. w e. dom F x = ( w + A ) ) | 
						
							| 11 |  | vex |  |-  x e. _V | 
						
							| 12 |  | eqeq1 |  |-  ( z = x -> ( z = ( w + A ) <-> x = ( w + A ) ) ) | 
						
							| 13 | 12 | rexbidv |  |-  ( z = x -> ( E. w e. dom F z = ( w + A ) <-> E. w e. dom F x = ( w + A ) ) ) | 
						
							| 14 | 11 13 | elab |  |-  ( x e. { z | E. w e. dom F z = ( w + A ) } <-> E. w e. dom F x = ( w + A ) ) | 
						
							| 15 | 10 14 | sylibr |  |-  ( ( ( A e. CC /\ x e. CC ) /\ ( x - A ) F y ) -> x e. { z | E. w e. dom F z = ( w + A ) } ) | 
						
							| 16 | 2 3 | brelrn |  |-  ( ( x - A ) F y -> y e. ran F ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ( A e. CC /\ x e. CC ) /\ ( x - A ) F y ) -> y e. ran F ) | 
						
							| 18 | 15 17 | jca |  |-  ( ( ( A e. CC /\ x e. CC ) /\ ( x - A ) F y ) -> ( x e. { z | E. w e. dom F z = ( w + A ) } /\ y e. ran F ) ) | 
						
							| 19 | 18 | expl |  |-  ( A e. CC -> ( ( x e. CC /\ ( x - A ) F y ) -> ( x e. { z | E. w e. dom F z = ( w + A ) } /\ y e. ran F ) ) ) | 
						
							| 20 | 19 | ssopab2dv |  |-  ( A e. CC -> { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } C_ { <. x , y >. | ( x e. { z | E. w e. dom F z = ( w + A ) } /\ y e. ran F ) } ) | 
						
							| 21 |  | df-xp |  |-  ( { z | E. w e. dom F z = ( w + A ) } X. ran F ) = { <. x , y >. | ( x e. { z | E. w e. dom F z = ( w + A ) } /\ y e. ran F ) } | 
						
							| 22 | 20 21 | sseqtrrdi |  |-  ( A e. CC -> { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } C_ ( { z | E. w e. dom F z = ( w + A ) } X. ran F ) ) | 
						
							| 23 | 1 | dmex |  |-  dom F e. _V | 
						
							| 24 | 23 | abrexex |  |-  { z | E. w e. dom F z = ( w + A ) } e. _V | 
						
							| 25 | 1 | rnex |  |-  ran F e. _V | 
						
							| 26 | 24 25 | xpex |  |-  ( { z | E. w e. dom F z = ( w + A ) } X. ran F ) e. _V | 
						
							| 27 |  | ssexg |  |-  ( ( { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } C_ ( { z | E. w e. dom F z = ( w + A ) } X. ran F ) /\ ( { z | E. w e. dom F z = ( w + A ) } X. ran F ) e. _V ) -> { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } e. _V ) | 
						
							| 28 | 22 26 27 | sylancl |  |-  ( A e. CC -> { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } e. _V ) | 
						
							| 29 |  | breq |  |-  ( z = F -> ( ( x - w ) z y <-> ( x - w ) F y ) ) | 
						
							| 30 | 29 | anbi2d |  |-  ( z = F -> ( ( x e. CC /\ ( x - w ) z y ) <-> ( x e. CC /\ ( x - w ) F y ) ) ) | 
						
							| 31 | 30 | opabbidv |  |-  ( z = F -> { <. x , y >. | ( x e. CC /\ ( x - w ) z y ) } = { <. x , y >. | ( x e. CC /\ ( x - w ) F y ) } ) | 
						
							| 32 |  | oveq2 |  |-  ( w = A -> ( x - w ) = ( x - A ) ) | 
						
							| 33 | 32 | breq1d |  |-  ( w = A -> ( ( x - w ) F y <-> ( x - A ) F y ) ) | 
						
							| 34 | 33 | anbi2d |  |-  ( w = A -> ( ( x e. CC /\ ( x - w ) F y ) <-> ( x e. CC /\ ( x - A ) F y ) ) ) | 
						
							| 35 | 34 | opabbidv |  |-  ( w = A -> { <. x , y >. | ( x e. CC /\ ( x - w ) F y ) } = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) | 
						
							| 36 |  | df-shft |  |-  shift = ( z e. _V , w e. CC |-> { <. x , y >. | ( x e. CC /\ ( x - w ) z y ) } ) | 
						
							| 37 | 31 35 36 | ovmpog |  |-  ( ( F e. _V /\ A e. CC /\ { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } e. _V ) -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) | 
						
							| 38 | 1 37 | mp3an1 |  |-  ( ( A e. CC /\ { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } e. _V ) -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) | 
						
							| 39 | 28 38 | mpdan |  |-  ( A e. CC -> ( F shift A ) = { <. x , y >. | ( x e. CC /\ ( x - A ) F y ) } ) |