Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
|- F e. _V |
2 |
|
subid1 |
|- ( x e. CC -> ( x - 0 ) = x ) |
3 |
2
|
breq1d |
|- ( x e. CC -> ( ( x - 0 ) F y <-> x F y ) ) |
4 |
3
|
pm5.32i |
|- ( ( x e. CC /\ ( x - 0 ) F y ) <-> ( x e. CC /\ x F y ) ) |
5 |
4
|
opabbii |
|- { <. x , y >. | ( x e. CC /\ ( x - 0 ) F y ) } = { <. x , y >. | ( x e. CC /\ x F y ) } |
6 |
|
0cn |
|- 0 e. CC |
7 |
1
|
shftfval |
|- ( 0 e. CC -> ( F shift 0 ) = { <. x , y >. | ( x e. CC /\ ( x - 0 ) F y ) } ) |
8 |
6 7
|
ax-mp |
|- ( F shift 0 ) = { <. x , y >. | ( x e. CC /\ ( x - 0 ) F y ) } |
9 |
|
dfres2 |
|- ( F |` CC ) = { <. x , y >. | ( x e. CC /\ x F y ) } |
10 |
5 8 9
|
3eqtr4i |
|- ( F shift 0 ) = ( F |` CC ) |