| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-rab |  |-  { x e. CC | ( x - A ) e. ( ZZ>= ` B ) } = { x | ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) } | 
						
							| 2 |  | simp2 |  |-  ( ( A e. ZZ /\ x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> x e. CC ) | 
						
							| 3 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 4 | 3 | 3ad2ant1 |  |-  ( ( A e. ZZ /\ x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> A e. CC ) | 
						
							| 5 | 2 4 | npcand |  |-  ( ( A e. ZZ /\ x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> ( ( x - A ) + A ) = x ) | 
						
							| 6 |  | eluzadd |  |-  ( ( ( x - A ) e. ( ZZ>= ` B ) /\ A e. ZZ ) -> ( ( x - A ) + A ) e. ( ZZ>= ` ( B + A ) ) ) | 
						
							| 7 | 6 | ancoms |  |-  ( ( A e. ZZ /\ ( x - A ) e. ( ZZ>= ` B ) ) -> ( ( x - A ) + A ) e. ( ZZ>= ` ( B + A ) ) ) | 
						
							| 8 | 7 | 3adant2 |  |-  ( ( A e. ZZ /\ x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> ( ( x - A ) + A ) e. ( ZZ>= ` ( B + A ) ) ) | 
						
							| 9 | 5 8 | eqeltrrd |  |-  ( ( A e. ZZ /\ x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> x e. ( ZZ>= ` ( B + A ) ) ) | 
						
							| 10 | 9 | 3expib |  |-  ( A e. ZZ -> ( ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> x e. ( ZZ>= ` ( B + A ) ) ) ) | 
						
							| 11 | 10 | adantr |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) -> x e. ( ZZ>= ` ( B + A ) ) ) ) | 
						
							| 12 |  | eluzelcn |  |-  ( x e. ( ZZ>= ` ( B + A ) ) -> x e. CC ) | 
						
							| 13 | 12 | a1i |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( x e. ( ZZ>= ` ( B + A ) ) -> x e. CC ) ) | 
						
							| 14 |  | eluzsub |  |-  ( ( B e. ZZ /\ A e. ZZ /\ x e. ( ZZ>= ` ( B + A ) ) ) -> ( x - A ) e. ( ZZ>= ` B ) ) | 
						
							| 15 | 14 | 3expia |  |-  ( ( B e. ZZ /\ A e. ZZ ) -> ( x e. ( ZZ>= ` ( B + A ) ) -> ( x - A ) e. ( ZZ>= ` B ) ) ) | 
						
							| 16 | 15 | ancoms |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( x e. ( ZZ>= ` ( B + A ) ) -> ( x - A ) e. ( ZZ>= ` B ) ) ) | 
						
							| 17 | 13 16 | jcad |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( x e. ( ZZ>= ` ( B + A ) ) -> ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) ) ) | 
						
							| 18 | 11 17 | impbid |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) <-> x e. ( ZZ>= ` ( B + A ) ) ) ) | 
						
							| 19 | 18 | eqabcdv |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> { x | ( x e. CC /\ ( x - A ) e. ( ZZ>= ` B ) ) } = ( ZZ>= ` ( B + A ) ) ) | 
						
							| 20 | 1 19 | eqtrid |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> { x e. CC | ( x - A ) e. ( ZZ>= ` B ) } = ( ZZ>= ` ( B + A ) ) ) |