Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
|- F e. _V |
2 |
1
|
shftfib |
|- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) " { B } ) = ( F " { ( B - A ) } ) ) |
3 |
2
|
eleq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( x e. ( ( F shift A ) " { B } ) <-> x e. ( F " { ( B - A ) } ) ) ) |
4 |
3
|
iotabidv |
|- ( ( A e. CC /\ B e. CC ) -> ( iota x x e. ( ( F shift A ) " { B } ) ) = ( iota x x e. ( F " { ( B - A ) } ) ) ) |
5 |
|
dffv3 |
|- ( ( F shift A ) ` B ) = ( iota x x e. ( ( F shift A ) " { B } ) ) |
6 |
|
dffv3 |
|- ( F ` ( B - A ) ) = ( iota x x e. ( F " { ( B - A ) } ) ) |
7 |
4 5 6
|
3eqtr4g |
|- ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) ` B ) = ( F ` ( B - A ) ) ) |