Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
|- F e. _V |
2 |
|
subcl |
|- ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC ) |
3 |
2
|
3adant3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - B ) e. CC ) |
4 |
|
addcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A + C ) e. CC ) |
5 |
1
|
shftval |
|- ( ( ( A - B ) e. CC /\ ( A + C ) e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + C ) ) = ( F ` ( ( A + C ) - ( A - B ) ) ) ) |
6 |
3 4 5
|
3imp3i2an |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + C ) ) = ( F ` ( ( A + C ) - ( A - B ) ) ) ) |
7 |
|
pnncan |
|- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - ( A - B ) ) = ( C + B ) ) |
8 |
7
|
3com23 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( A - B ) ) = ( C + B ) ) |
9 |
|
addcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
10 |
9
|
3adant1 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
11 |
8 10
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( A - B ) ) = ( B + C ) ) |
12 |
11
|
fveq2d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( F ` ( ( A + C ) - ( A - B ) ) ) = ( F ` ( B + C ) ) ) |
13 |
6 12
|
eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + C ) ) = ( F ` ( B + C ) ) ) |