Metamath Proof Explorer


Theorem shftval2

Description: Value of a sequence shifted by A - B . (Contributed by NM, 20-Jul-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1
|- F e. _V
Assertion shftval2
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + C ) ) = ( F ` ( B + C ) ) )

Proof

Step Hyp Ref Expression
1 shftfval.1
 |-  F e. _V
2 subcl
 |-  ( ( A e. CC /\ B e. CC ) -> ( A - B ) e. CC )
3 2 3adant3
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - B ) e. CC )
4 addcl
 |-  ( ( A e. CC /\ C e. CC ) -> ( A + C ) e. CC )
5 1 shftval
 |-  ( ( ( A - B ) e. CC /\ ( A + C ) e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + C ) ) = ( F ` ( ( A + C ) - ( A - B ) ) ) )
6 3 4 5 3imp3i2an
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + C ) ) = ( F ` ( ( A + C ) - ( A - B ) ) ) )
7 pnncan
 |-  ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A + C ) - ( A - B ) ) = ( C + B ) )
8 7 3com23
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( A - B ) ) = ( C + B ) )
9 addcom
 |-  ( ( B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) )
10 9 3adant1
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) )
11 8 10 eqtr4d
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A + C ) - ( A - B ) ) = ( B + C ) )
12 11 fveq2d
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( F ` ( ( A + C ) - ( A - B ) ) ) = ( F ` ( B + C ) ) )
13 6 12 eqtrd
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + C ) ) = ( F ` ( B + C ) ) )