| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shftfval.1 |
|- F e. _V |
| 2 |
|
0cn |
|- 0 e. CC |
| 3 |
1
|
shftval2 |
|- ( ( A e. CC /\ B e. CC /\ 0 e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + 0 ) ) = ( F ` ( B + 0 ) ) ) |
| 4 |
2 3
|
mp3an3 |
|- ( ( A e. CC /\ B e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + 0 ) ) = ( F ` ( B + 0 ) ) ) |
| 5 |
|
addrid |
|- ( A e. CC -> ( A + 0 ) = A ) |
| 6 |
5
|
adantr |
|- ( ( A e. CC /\ B e. CC ) -> ( A + 0 ) = A ) |
| 7 |
6
|
fveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( F shift ( A - B ) ) ` ( A + 0 ) ) = ( ( F shift ( A - B ) ) ` A ) ) |
| 8 |
|
addrid |
|- ( B e. CC -> ( B + 0 ) = B ) |
| 9 |
8
|
adantl |
|- ( ( A e. CC /\ B e. CC ) -> ( B + 0 ) = B ) |
| 10 |
9
|
fveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( F ` ( B + 0 ) ) = ( F ` B ) ) |
| 11 |
4 7 10
|
3eqtr3d |
|- ( ( A e. CC /\ B e. CC ) -> ( ( F shift ( A - B ) ) ` A ) = ( F ` B ) ) |