Step |
Hyp |
Ref |
Expression |
1 |
|
shftfval.1 |
|- F e. _V |
2 |
|
negcl |
|- ( A e. CC -> -u A e. CC ) |
3 |
1
|
shftval |
|- ( ( -u A e. CC /\ B e. CC ) -> ( ( F shift -u A ) ` B ) = ( F ` ( B - -u A ) ) ) |
4 |
2 3
|
sylan |
|- ( ( A e. CC /\ B e. CC ) -> ( ( F shift -u A ) ` B ) = ( F ` ( B - -u A ) ) ) |
5 |
|
subneg |
|- ( ( B e. CC /\ A e. CC ) -> ( B - -u A ) = ( B + A ) ) |
6 |
5
|
ancoms |
|- ( ( A e. CC /\ B e. CC ) -> ( B - -u A ) = ( B + A ) ) |
7 |
|
addcom |
|- ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) |
8 |
6 7
|
eqtr4d |
|- ( ( A e. CC /\ B e. CC ) -> ( B - -u A ) = ( A + B ) ) |
9 |
8
|
fveq2d |
|- ( ( A e. CC /\ B e. CC ) -> ( F ` ( B - -u A ) ) = ( F ` ( A + B ) ) ) |
10 |
4 9
|
eqtrd |
|- ( ( A e. CC /\ B e. CC ) -> ( ( F shift -u A ) ` B ) = ( F ` ( A + B ) ) ) |