Metamath Proof Explorer


Theorem shftval4

Description: Value of a sequence shifted by -u A . (Contributed by NM, 18-Aug-2005) (Revised by Mario Carneiro, 5-Nov-2013)

Ref Expression
Hypothesis shftfval.1
|- F e. _V
Assertion shftval4
|- ( ( A e. CC /\ B e. CC ) -> ( ( F shift -u A ) ` B ) = ( F ` ( A + B ) ) )

Proof

Step Hyp Ref Expression
1 shftfval.1
 |-  F e. _V
2 negcl
 |-  ( A e. CC -> -u A e. CC )
3 1 shftval
 |-  ( ( -u A e. CC /\ B e. CC ) -> ( ( F shift -u A ) ` B ) = ( F ` ( B - -u A ) ) )
4 2 3 sylan
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift -u A ) ` B ) = ( F ` ( B - -u A ) ) )
5 subneg
 |-  ( ( B e. CC /\ A e. CC ) -> ( B - -u A ) = ( B + A ) )
6 5 ancoms
 |-  ( ( A e. CC /\ B e. CC ) -> ( B - -u A ) = ( B + A ) )
7 addcom
 |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) )
8 6 7 eqtr4d
 |-  ( ( A e. CC /\ B e. CC ) -> ( B - -u A ) = ( A + B ) )
9 8 fveq2d
 |-  ( ( A e. CC /\ B e. CC ) -> ( F ` ( B - -u A ) ) = ( F ` ( A + B ) ) )
10 4 9 eqtrd
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift -u A ) ` B ) = ( F ` ( A + B ) ) )