| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 |  |-  F e. _V | 
						
							| 2 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 3 | 1 | shftval |  |-  ( ( -u A e. CC /\ B e. CC ) -> ( ( F shift -u A ) ` B ) = ( F ` ( B - -u A ) ) ) | 
						
							| 4 | 2 3 | sylan |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift -u A ) ` B ) = ( F ` ( B - -u A ) ) ) | 
						
							| 5 |  | subneg |  |-  ( ( B e. CC /\ A e. CC ) -> ( B - -u A ) = ( B + A ) ) | 
						
							| 6 | 5 | ancoms |  |-  ( ( A e. CC /\ B e. CC ) -> ( B - -u A ) = ( B + A ) ) | 
						
							| 7 |  | addcom |  |-  ( ( A e. CC /\ B e. CC ) -> ( A + B ) = ( B + A ) ) | 
						
							| 8 | 6 7 | eqtr4d |  |-  ( ( A e. CC /\ B e. CC ) -> ( B - -u A ) = ( A + B ) ) | 
						
							| 9 | 8 | fveq2d |  |-  ( ( A e. CC /\ B e. CC ) -> ( F ` ( B - -u A ) ) = ( F ` ( A + B ) ) ) | 
						
							| 10 | 4 9 | eqtrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift -u A ) ` B ) = ( F ` ( A + B ) ) ) |