| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shftfval.1 |  |-  F e. _V | 
						
							| 2 |  | simpr |  |-  ( ( B e. CC /\ A e. CC ) -> A e. CC ) | 
						
							| 3 |  | addcl |  |-  ( ( B e. CC /\ A e. CC ) -> ( B + A ) e. CC ) | 
						
							| 4 | 1 | shftval |  |-  ( ( A e. CC /\ ( B + A ) e. CC ) -> ( ( F shift A ) ` ( B + A ) ) = ( F ` ( ( B + A ) - A ) ) ) | 
						
							| 5 | 2 3 4 | syl2anc |  |-  ( ( B e. CC /\ A e. CC ) -> ( ( F shift A ) ` ( B + A ) ) = ( F ` ( ( B + A ) - A ) ) ) | 
						
							| 6 |  | pncan |  |-  ( ( B e. CC /\ A e. CC ) -> ( ( B + A ) - A ) = B ) | 
						
							| 7 | 6 | fveq2d |  |-  ( ( B e. CC /\ A e. CC ) -> ( F ` ( ( B + A ) - A ) ) = ( F ` B ) ) | 
						
							| 8 | 5 7 | eqtrd |  |-  ( ( B e. CC /\ A e. CC ) -> ( ( F shift A ) ` ( B + A ) ) = ( F ` B ) ) | 
						
							| 9 | 8 | ancoms |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( F shift A ) ` ( B + A ) ) = ( F ` B ) ) |