| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ineq1 |
|- ( A = if ( A e. SH , A , ~H ) -> ( A i^i B ) = ( if ( A e. SH , A , ~H ) i^i B ) ) |
| 2 |
1
|
eleq1d |
|- ( A = if ( A e. SH , A , ~H ) -> ( ( A i^i B ) e. SH <-> ( if ( A e. SH , A , ~H ) i^i B ) e. SH ) ) |
| 3 |
|
ineq2 |
|- ( B = if ( B e. SH , B , ~H ) -> ( if ( A e. SH , A , ~H ) i^i B ) = ( if ( A e. SH , A , ~H ) i^i if ( B e. SH , B , ~H ) ) ) |
| 4 |
3
|
eleq1d |
|- ( B = if ( B e. SH , B , ~H ) -> ( ( if ( A e. SH , A , ~H ) i^i B ) e. SH <-> ( if ( A e. SH , A , ~H ) i^i if ( B e. SH , B , ~H ) ) e. SH ) ) |
| 5 |
|
helsh |
|- ~H e. SH |
| 6 |
5
|
elimel |
|- if ( A e. SH , A , ~H ) e. SH |
| 7 |
5
|
elimel |
|- if ( B e. SH , B , ~H ) e. SH |
| 8 |
6 7
|
shincli |
|- ( if ( A e. SH , A , ~H ) i^i if ( B e. SH , B , ~H ) ) e. SH |
| 9 |
2 4 8
|
dedth2h |
|- ( ( A e. SH /\ B e. SH ) -> ( A i^i B ) e. SH ) |