| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							inteq | 
							 |-  ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> |^| A = |^| if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							eleq1d | 
							 |-  ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( |^| A e. SH <-> |^| if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) e. SH ) )  | 
						
						
							| 3 | 
							
								
							 | 
							sseq1 | 
							 |-  ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( A C_ SH <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH ) )  | 
						
						
							| 4 | 
							
								
							 | 
							neeq1 | 
							 |-  ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( A =/= (/) <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							anbi12d | 
							 |-  ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( ( A C_ SH /\ A =/= (/) ) <-> ( if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH /\ if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							sseq1 | 
							 |-  ( SH = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( SH C_ SH <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH ) )  | 
						
						
							| 7 | 
							
								
							 | 
							neeq1 | 
							 |-  ( SH = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( SH =/= (/) <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							anbi12d | 
							 |-  ( SH = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( ( SH C_ SH /\ SH =/= (/) ) <-> ( if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH /\ if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							ssid | 
							 |-  SH C_ SH  | 
						
						
							| 10 | 
							
								
							 | 
							h0elsh | 
							 |-  0H e. SH  | 
						
						
							| 11 | 
							
								10
							 | 
							ne0ii | 
							 |-  SH =/= (/)  | 
						
						
							| 12 | 
							
								9 11
							 | 
							pm3.2i | 
							 |-  ( SH C_ SH /\ SH =/= (/) )  | 
						
						
							| 13 | 
							
								5 8 12
							 | 
							elimhyp | 
							 |-  ( if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH /\ if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) )  | 
						
						
							| 14 | 
							
								13
							 | 
							shintcli | 
							 |-  |^| if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) e. SH  | 
						
						
							| 15 | 
							
								2 14
							 | 
							dedth | 
							 |-  ( ( A C_ SH /\ A =/= (/) ) -> |^| A e. SH )  |