Step |
Hyp |
Ref |
Expression |
1 |
|
inteq |
|- ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> |^| A = |^| if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) ) |
2 |
1
|
eleq1d |
|- ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( |^| A e. SH <-> |^| if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) e. SH ) ) |
3 |
|
sseq1 |
|- ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( A C_ SH <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH ) ) |
4 |
|
neeq1 |
|- ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( A =/= (/) <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) ) |
5 |
3 4
|
anbi12d |
|- ( A = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( ( A C_ SH /\ A =/= (/) ) <-> ( if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH /\ if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) ) ) |
6 |
|
sseq1 |
|- ( SH = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( SH C_ SH <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH ) ) |
7 |
|
neeq1 |
|- ( SH = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( SH =/= (/) <-> if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) ) |
8 |
6 7
|
anbi12d |
|- ( SH = if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) -> ( ( SH C_ SH /\ SH =/= (/) ) <-> ( if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH /\ if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) ) ) |
9 |
|
ssid |
|- SH C_ SH |
10 |
|
h0elsh |
|- 0H e. SH |
11 |
10
|
ne0ii |
|- SH =/= (/) |
12 |
9 11
|
pm3.2i |
|- ( SH C_ SH /\ SH =/= (/) ) |
13 |
5 8 12
|
elimhyp |
|- ( if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) C_ SH /\ if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) =/= (/) ) |
14 |
13
|
shintcli |
|- |^| if ( ( A C_ SH /\ A =/= (/) ) , A , SH ) e. SH |
15 |
2 14
|
dedth |
|- ( ( A C_ SH /\ A =/= (/) ) -> |^| A e. SH ) |