| Step |
Hyp |
Ref |
Expression |
| 1 |
|
shjval |
|- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
| 2 |
|
shjval |
|- ( ( B e. SH /\ A e. SH ) -> ( B vH A ) = ( _|_ ` ( _|_ ` ( B u. A ) ) ) ) |
| 3 |
2
|
ancoms |
|- ( ( A e. SH /\ B e. SH ) -> ( B vH A ) = ( _|_ ` ( _|_ ` ( B u. A ) ) ) ) |
| 4 |
|
uncom |
|- ( B u. A ) = ( A u. B ) |
| 5 |
4
|
fveq2i |
|- ( _|_ ` ( B u. A ) ) = ( _|_ ` ( A u. B ) ) |
| 6 |
5
|
fveq2i |
|- ( _|_ ` ( _|_ ` ( B u. A ) ) ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) |
| 7 |
3 6
|
eqtrdi |
|- ( ( A e. SH /\ B e. SH ) -> ( B vH A ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
| 8 |
1 7
|
eqtr4d |
|- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( B vH A ) ) |