| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							shjshs.1 | 
							 |-  A e. SH  | 
						
						
							| 2 | 
							
								
							 | 
							shjshs.2 | 
							 |-  B e. SH  | 
						
						
							| 3 | 
							
								
							 | 
							shjval | 
							 |-  ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) )  | 
						
						
							| 4 | 
							
								1 2 3
							 | 
							mp2an | 
							 |-  ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) )  | 
						
						
							| 5 | 
							
								1 2
							 | 
							shunssi | 
							 |-  ( A u. B ) C_ ( A +H B )  | 
						
						
							| 6 | 
							
								1
							 | 
							shssii | 
							 |-  A C_ ~H  | 
						
						
							| 7 | 
							
								2
							 | 
							shssii | 
							 |-  B C_ ~H  | 
						
						
							| 8 | 
							
								6 7
							 | 
							unssi | 
							 |-  ( A u. B ) C_ ~H  | 
						
						
							| 9 | 
							
								1 2
							 | 
							shscli | 
							 |-  ( A +H B ) e. SH  | 
						
						
							| 10 | 
							
								9
							 | 
							shssii | 
							 |-  ( A +H B ) C_ ~H  | 
						
						
							| 11 | 
							
								8 10
							 | 
							occon2i | 
							 |-  ( ( A u. B ) C_ ( A +H B ) -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` ( A +H B ) ) ) )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							ax-mp | 
							 |-  ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` ( A +H B ) ) )  | 
						
						
							| 13 | 
							
								4 12
							 | 
							eqsstri | 
							 |-  ( A vH B ) C_ ( _|_ ` ( _|_ ` ( A +H B ) ) )  | 
						
						
							| 14 | 
							
								1 2
							 | 
							shsleji | 
							 |-  ( A +H B ) C_ ( A vH B )  | 
						
						
							| 15 | 
							
								1 2
							 | 
							shjcli | 
							 |-  ( A vH B ) e. CH  | 
						
						
							| 16 | 
							
								15
							 | 
							chssii | 
							 |-  ( A vH B ) C_ ~H  | 
						
						
							| 17 | 
							
								
							 | 
							occon | 
							 |-  ( ( ( A +H B ) C_ ~H /\ ( A vH B ) C_ ~H ) -> ( ( A +H B ) C_ ( A vH B ) -> ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) ) )  | 
						
						
							| 18 | 
							
								10 16 17
							 | 
							mp2an | 
							 |-  ( ( A +H B ) C_ ( A vH B ) -> ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) )  | 
						
						
							| 19 | 
							
								14 18
							 | 
							ax-mp | 
							 |-  ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) )  | 
						
						
							| 20 | 
							
								
							 | 
							occl | 
							 |-  ( ( A +H B ) C_ ~H -> ( _|_ ` ( A +H B ) ) e. CH )  | 
						
						
							| 21 | 
							
								10 20
							 | 
							ax-mp | 
							 |-  ( _|_ ` ( A +H B ) ) e. CH  | 
						
						
							| 22 | 
							
								15 21
							 | 
							chsscon1i | 
							 |-  ( ( _|_ ` ( A vH B ) ) C_ ( _|_ ` ( A +H B ) ) <-> ( _|_ ` ( _|_ ` ( A +H B ) ) ) C_ ( A vH B ) )  | 
						
						
							| 23 | 
							
								19 22
							 | 
							mpbi | 
							 |-  ( _|_ ` ( _|_ ` ( A +H B ) ) ) C_ ( A vH B )  | 
						
						
							| 24 | 
							
								13 23
							 | 
							eqssi | 
							 |-  ( A vH B ) = ( _|_ ` ( _|_ ` ( A +H B ) ) )  |