Description: No subspace is smaller than the zero subspace. (Contributed by NM, 24-Nov-2004) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shle0 | |- ( A e. SH -> ( A C_ 0H <-> A = 0H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sh0le | |- ( A e. SH -> 0H C_ A ) |
|
| 2 | 1 | biantrud | |- ( A e. SH -> ( A C_ 0H <-> ( A C_ 0H /\ 0H C_ A ) ) ) |
| 3 | eqss | |- ( A = 0H <-> ( A C_ 0H /\ 0H C_ A ) ) |
|
| 4 | 2 3 | bitr4di | |- ( A e. SH -> ( A C_ 0H <-> A = 0H ) ) |