Metamath Proof Explorer


Theorem shlej1i

Description: Add disjunct to both sides of Hilbert subspace ordering. (Contributed by NM, 19-Oct-1999) (Revised by Mario Carneiro, 15-May-2014) (New usage is discouraged.)

Ref Expression
Hypotheses shincl.1
|- A e. SH
shincl.2
|- B e. SH
shless.1
|- C e. SH
Assertion shlej1i
|- ( A C_ B -> ( A vH C ) C_ ( B vH C ) )

Proof

Step Hyp Ref Expression
1 shincl.1
 |-  A e. SH
2 shincl.2
 |-  B e. SH
3 shless.1
 |-  C e. SH
4 shlej1
 |-  ( ( ( A e. SH /\ B e. SH /\ C e. SH ) /\ A C_ B ) -> ( A vH C ) C_ ( B vH C ) )
5 4 ex
 |-  ( ( A e. SH /\ B e. SH /\ C e. SH ) -> ( A C_ B -> ( A vH C ) C_ ( B vH C ) ) )
6 1 2 3 5 mp3an
 |-  ( A C_ B -> ( A vH C ) C_ ( B vH C ) )