| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shlesb1.1 |  |-  A e. SH | 
						
							| 2 |  | shlesb1.2 |  |-  B e. SH | 
						
							| 3 |  | ssid |  |-  B C_ B | 
						
							| 4 | 3 | biantrur |  |-  ( A C_ B <-> ( B C_ B /\ A C_ B ) ) | 
						
							| 5 | 2 1 2 | shslubi |  |-  ( ( B C_ B /\ A C_ B ) <-> ( B +H A ) C_ B ) | 
						
							| 6 | 2 1 | shsub2i |  |-  B C_ ( A +H B ) | 
						
							| 7 |  | eqss |  |-  ( ( A +H B ) = B <-> ( ( A +H B ) C_ B /\ B C_ ( A +H B ) ) ) | 
						
							| 8 | 6 7 | mpbiran2 |  |-  ( ( A +H B ) = B <-> ( A +H B ) C_ B ) | 
						
							| 9 | 1 2 | shscomi |  |-  ( A +H B ) = ( B +H A ) | 
						
							| 10 | 9 | sseq1i |  |-  ( ( A +H B ) C_ B <-> ( B +H A ) C_ B ) | 
						
							| 11 | 8 10 | bitr2i |  |-  ( ( B +H A ) C_ B <-> ( A +H B ) = B ) | 
						
							| 12 | 4 5 11 | 3bitri |  |-  ( A C_ B <-> ( A +H B ) = B ) |