| Step |
Hyp |
Ref |
Expression |
| 1 |
|
unss |
|- ( ( A C_ C /\ B C_ C ) <-> ( A u. B ) C_ C ) |
| 2 |
|
simp1 |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> A e. SH ) |
| 3 |
|
shss |
|- ( A e. SH -> A C_ ~H ) |
| 4 |
2 3
|
syl |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> A C_ ~H ) |
| 5 |
|
simp2 |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> B e. SH ) |
| 6 |
|
shss |
|- ( B e. SH -> B C_ ~H ) |
| 7 |
5 6
|
syl |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> B C_ ~H ) |
| 8 |
4 7
|
unssd |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( A u. B ) C_ ~H ) |
| 9 |
|
chss |
|- ( C e. CH -> C C_ ~H ) |
| 10 |
9
|
3ad2ant3 |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> C C_ ~H ) |
| 11 |
|
occon2 |
|- ( ( ( A u. B ) C_ ~H /\ C C_ ~H ) -> ( ( A u. B ) C_ C -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` C ) ) ) ) |
| 12 |
8 10 11
|
syl2anc |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A u. B ) C_ C -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` C ) ) ) ) |
| 13 |
1 12
|
biimtrid |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) -> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` C ) ) ) ) |
| 14 |
|
shjval |
|- ( ( A e. SH /\ B e. SH ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
| 15 |
2 5 14
|
syl2anc |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( A vH B ) = ( _|_ ` ( _|_ ` ( A u. B ) ) ) ) |
| 16 |
|
ococ |
|- ( C e. CH -> ( _|_ ` ( _|_ ` C ) ) = C ) |
| 17 |
16
|
3ad2ant3 |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( _|_ ` ( _|_ ` C ) ) = C ) |
| 18 |
17
|
eqcomd |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> C = ( _|_ ` ( _|_ ` C ) ) ) |
| 19 |
15 18
|
sseq12d |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A vH B ) C_ C <-> ( _|_ ` ( _|_ ` ( A u. B ) ) ) C_ ( _|_ ` ( _|_ ` C ) ) ) ) |
| 20 |
13 19
|
sylibrd |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) -> ( A vH B ) C_ C ) ) |
| 21 |
|
shub1 |
|- ( ( A e. SH /\ B e. SH ) -> A C_ ( A vH B ) ) |
| 22 |
2 5 21
|
syl2anc |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> A C_ ( A vH B ) ) |
| 23 |
|
sstr |
|- ( ( A C_ ( A vH B ) /\ ( A vH B ) C_ C ) -> A C_ C ) |
| 24 |
22 23
|
sylan |
|- ( ( ( A e. SH /\ B e. SH /\ C e. CH ) /\ ( A vH B ) C_ C ) -> A C_ C ) |
| 25 |
|
shub2 |
|- ( ( B e. SH /\ A e. SH ) -> B C_ ( A vH B ) ) |
| 26 |
5 2 25
|
syl2anc |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> B C_ ( A vH B ) ) |
| 27 |
|
sstr |
|- ( ( B C_ ( A vH B ) /\ ( A vH B ) C_ C ) -> B C_ C ) |
| 28 |
26 27
|
sylan |
|- ( ( ( A e. SH /\ B e. SH /\ C e. CH ) /\ ( A vH B ) C_ C ) -> B C_ C ) |
| 29 |
24 28
|
jca |
|- ( ( ( A e. SH /\ B e. SH /\ C e. CH ) /\ ( A vH B ) C_ C ) -> ( A C_ C /\ B C_ C ) ) |
| 30 |
29
|
ex |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A vH B ) C_ C -> ( A C_ C /\ B C_ C ) ) ) |
| 31 |
20 30
|
impbid |
|- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) ) |