Metamath Proof Explorer


Theorem shlubi

Description: Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)

Ref Expression
Hypotheses shlub.1
|- A e. SH
shlub.2
|- B e. SH
shlub.3
|- C e. CH
Assertion shlubi
|- ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C )

Proof

Step Hyp Ref Expression
1 shlub.1
 |-  A e. SH
2 shlub.2
 |-  B e. SH
3 shlub.3
 |-  C e. CH
4 shlub
 |-  ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) )
5 1 2 3 4 mp3an
 |-  ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C )