Description: Hilbert lattice join is the least upper bound (among Hilbert lattice elements) of two subspaces. (Contributed by NM, 11-Jun-2004) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shlub.1 | |- A e. SH |
|
shlub.2 | |- B e. SH |
||
shlub.3 | |- C e. CH |
||
Assertion | shlubi | |- ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shlub.1 | |- A e. SH |
|
2 | shlub.2 | |- B e. SH |
|
3 | shlub.3 | |- C e. CH |
|
4 | shlub | |- ( ( A e. SH /\ B e. SH /\ C e. CH ) -> ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) ) |
|
5 | 1 2 3 4 | mp3an | |- ( ( A C_ C /\ B C_ C ) <-> ( A vH B ) C_ C ) |