| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shmod.1 |  |-  A e. SH | 
						
							| 2 |  | shmod.2 |  |-  B e. SH | 
						
							| 3 |  | shmod.3 |  |-  C e. SH | 
						
							| 4 | 1 2 3 | shmodsi |  |-  ( A C_ C -> ( ( A +H B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) | 
						
							| 5 |  | ineq1 |  |-  ( ( A +H B ) = ( A vH B ) -> ( ( A +H B ) i^i C ) = ( ( A vH B ) i^i C ) ) | 
						
							| 6 | 5 | sseq1d |  |-  ( ( A +H B ) = ( A vH B ) -> ( ( ( A +H B ) i^i C ) C_ ( A +H ( B i^i C ) ) <-> ( ( A vH B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) ) | 
						
							| 7 | 4 6 | imbitrid |  |-  ( ( A +H B ) = ( A vH B ) -> ( A C_ C -> ( ( A vH B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( ( A +H B ) = ( A vH B ) /\ A C_ C ) -> ( ( A vH B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) | 
						
							| 9 | 2 3 | shincli |  |-  ( B i^i C ) e. SH | 
						
							| 10 | 1 9 | shsleji |  |-  ( A +H ( B i^i C ) ) C_ ( A vH ( B i^i C ) ) | 
						
							| 11 | 8 10 | sstrdi |  |-  ( ( ( A +H B ) = ( A vH B ) /\ A C_ C ) -> ( ( A vH B ) i^i C ) C_ ( A vH ( B i^i C ) ) ) |