| Step | Hyp | Ref | Expression | 
						
							| 1 |  | shmod.1 |  |-  A e. SH | 
						
							| 2 |  | shmod.2 |  |-  B e. SH | 
						
							| 3 |  | shmod.3 |  |-  C e. SH | 
						
							| 4 |  | elin |  |-  ( z e. ( ( A +H B ) i^i C ) <-> ( z e. ( A +H B ) /\ z e. C ) ) | 
						
							| 5 | 1 2 | shseli |  |-  ( z e. ( A +H B ) <-> E. x e. A E. y e. B z = ( x +h y ) ) | 
						
							| 6 | 3 | sheli |  |-  ( z e. C -> z e. ~H ) | 
						
							| 7 | 1 | sheli |  |-  ( x e. A -> x e. ~H ) | 
						
							| 8 | 2 | sheli |  |-  ( y e. B -> y e. ~H ) | 
						
							| 9 |  | hvsubadd |  |-  ( ( z e. ~H /\ x e. ~H /\ y e. ~H ) -> ( ( z -h x ) = y <-> ( x +h y ) = z ) ) | 
						
							| 10 | 6 7 8 9 | syl3an |  |-  ( ( z e. C /\ x e. A /\ y e. B ) -> ( ( z -h x ) = y <-> ( x +h y ) = z ) ) | 
						
							| 11 |  | eqcom |  |-  ( ( x +h y ) = z <-> z = ( x +h y ) ) | 
						
							| 12 | 10 11 | bitrdi |  |-  ( ( z e. C /\ x e. A /\ y e. B ) -> ( ( z -h x ) = y <-> z = ( x +h y ) ) ) | 
						
							| 13 | 12 | 3expb |  |-  ( ( z e. C /\ ( x e. A /\ y e. B ) ) -> ( ( z -h x ) = y <-> z = ( x +h y ) ) ) | 
						
							| 14 | 3 1 | shsvsi |  |-  ( ( z e. C /\ x e. A ) -> ( z -h x ) e. ( C +H A ) ) | 
						
							| 15 | 3 1 | shscomi |  |-  ( C +H A ) = ( A +H C ) | 
						
							| 16 | 14 15 | eleqtrdi |  |-  ( ( z e. C /\ x e. A ) -> ( z -h x ) e. ( A +H C ) ) | 
						
							| 17 | 1 3 | shlesb1i |  |-  ( A C_ C <-> ( A +H C ) = C ) | 
						
							| 18 | 17 | biimpi |  |-  ( A C_ C -> ( A +H C ) = C ) | 
						
							| 19 | 18 | eleq2d |  |-  ( A C_ C -> ( ( z -h x ) e. ( A +H C ) <-> ( z -h x ) e. C ) ) | 
						
							| 20 | 16 19 | imbitrid |  |-  ( A C_ C -> ( ( z e. C /\ x e. A ) -> ( z -h x ) e. C ) ) | 
						
							| 21 |  | eleq1 |  |-  ( ( z -h x ) = y -> ( ( z -h x ) e. C <-> y e. C ) ) | 
						
							| 22 | 21 | biimpd |  |-  ( ( z -h x ) = y -> ( ( z -h x ) e. C -> y e. C ) ) | 
						
							| 23 | 20 22 | sylan9 |  |-  ( ( A C_ C /\ ( z -h x ) = y ) -> ( ( z e. C /\ x e. A ) -> y e. C ) ) | 
						
							| 24 | 23 | anim2d |  |-  ( ( A C_ C /\ ( z -h x ) = y ) -> ( ( y e. B /\ ( z e. C /\ x e. A ) ) -> ( y e. B /\ y e. C ) ) ) | 
						
							| 25 |  | elin |  |-  ( y e. ( B i^i C ) <-> ( y e. B /\ y e. C ) ) | 
						
							| 26 | 24 25 | imbitrrdi |  |-  ( ( A C_ C /\ ( z -h x ) = y ) -> ( ( y e. B /\ ( z e. C /\ x e. A ) ) -> y e. ( B i^i C ) ) ) | 
						
							| 27 | 26 | ex |  |-  ( A C_ C -> ( ( z -h x ) = y -> ( ( y e. B /\ ( z e. C /\ x e. A ) ) -> y e. ( B i^i C ) ) ) ) | 
						
							| 28 | 27 | com13 |  |-  ( ( y e. B /\ ( z e. C /\ x e. A ) ) -> ( ( z -h x ) = y -> ( A C_ C -> y e. ( B i^i C ) ) ) ) | 
						
							| 29 | 28 | ancoms |  |-  ( ( ( z e. C /\ x e. A ) /\ y e. B ) -> ( ( z -h x ) = y -> ( A C_ C -> y e. ( B i^i C ) ) ) ) | 
						
							| 30 | 29 | anasss |  |-  ( ( z e. C /\ ( x e. A /\ y e. B ) ) -> ( ( z -h x ) = y -> ( A C_ C -> y e. ( B i^i C ) ) ) ) | 
						
							| 31 | 13 30 | sylbird |  |-  ( ( z e. C /\ ( x e. A /\ y e. B ) ) -> ( z = ( x +h y ) -> ( A C_ C -> y e. ( B i^i C ) ) ) ) | 
						
							| 32 | 31 | imp |  |-  ( ( ( z e. C /\ ( x e. A /\ y e. B ) ) /\ z = ( x +h y ) ) -> ( A C_ C -> y e. ( B i^i C ) ) ) | 
						
							| 33 | 2 3 | shincli |  |-  ( B i^i C ) e. SH | 
						
							| 34 | 1 33 | shsvai |  |-  ( ( x e. A /\ y e. ( B i^i C ) ) -> ( x +h y ) e. ( A +H ( B i^i C ) ) ) | 
						
							| 35 |  | eleq1 |  |-  ( z = ( x +h y ) -> ( z e. ( A +H ( B i^i C ) ) <-> ( x +h y ) e. ( A +H ( B i^i C ) ) ) ) | 
						
							| 36 | 34 35 | imbitrrid |  |-  ( z = ( x +h y ) -> ( ( x e. A /\ y e. ( B i^i C ) ) -> z e. ( A +H ( B i^i C ) ) ) ) | 
						
							| 37 | 36 | expd |  |-  ( z = ( x +h y ) -> ( x e. A -> ( y e. ( B i^i C ) -> z e. ( A +H ( B i^i C ) ) ) ) ) | 
						
							| 38 | 37 | com12 |  |-  ( x e. A -> ( z = ( x +h y ) -> ( y e. ( B i^i C ) -> z e. ( A +H ( B i^i C ) ) ) ) ) | 
						
							| 39 | 38 | ad2antrl |  |-  ( ( z e. C /\ ( x e. A /\ y e. B ) ) -> ( z = ( x +h y ) -> ( y e. ( B i^i C ) -> z e. ( A +H ( B i^i C ) ) ) ) ) | 
						
							| 40 | 39 | imp |  |-  ( ( ( z e. C /\ ( x e. A /\ y e. B ) ) /\ z = ( x +h y ) ) -> ( y e. ( B i^i C ) -> z e. ( A +H ( B i^i C ) ) ) ) | 
						
							| 41 | 32 40 | syld |  |-  ( ( ( z e. C /\ ( x e. A /\ y e. B ) ) /\ z = ( x +h y ) ) -> ( A C_ C -> z e. ( A +H ( B i^i C ) ) ) ) | 
						
							| 42 | 41 | exp31 |  |-  ( z e. C -> ( ( x e. A /\ y e. B ) -> ( z = ( x +h y ) -> ( A C_ C -> z e. ( A +H ( B i^i C ) ) ) ) ) ) | 
						
							| 43 | 42 | rexlimdvv |  |-  ( z e. C -> ( E. x e. A E. y e. B z = ( x +h y ) -> ( A C_ C -> z e. ( A +H ( B i^i C ) ) ) ) ) | 
						
							| 44 | 5 43 | biimtrid |  |-  ( z e. C -> ( z e. ( A +H B ) -> ( A C_ C -> z e. ( A +H ( B i^i C ) ) ) ) ) | 
						
							| 45 | 44 | com13 |  |-  ( A C_ C -> ( z e. ( A +H B ) -> ( z e. C -> z e. ( A +H ( B i^i C ) ) ) ) ) | 
						
							| 46 | 45 | impd |  |-  ( A C_ C -> ( ( z e. ( A +H B ) /\ z e. C ) -> z e. ( A +H ( B i^i C ) ) ) ) | 
						
							| 47 | 4 46 | biimtrid |  |-  ( A C_ C -> ( z e. ( ( A +H B ) i^i C ) -> z e. ( A +H ( B i^i C ) ) ) ) | 
						
							| 48 | 47 | ssrdv |  |-  ( A C_ C -> ( ( A +H B ) i^i C ) C_ ( A +H ( B i^i C ) ) ) |