Description: Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | shocel | |- ( H e. SH -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | shss | |- ( H e. SH -> H C_ ~H ) | |
| 2 | ocel | |- ( H C_ ~H -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) ) | |
| 3 | 1 2 | syl | |- ( H e. SH -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) ) |