Description: Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shocel | |- ( H e. SH -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shss | |- ( H e. SH -> H C_ ~H ) |
|
2 | ocel | |- ( H C_ ~H -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) ) |
|
3 | 1 2 | syl | |- ( H e. SH -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) ) |