Metamath Proof Explorer


Theorem shocel

Description: Membership in orthogonal complement of H subspace. (Contributed by NM, 9-Oct-1999) (New usage is discouraged.)

Ref Expression
Assertion shocel
|- ( H e. SH -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) )

Proof

Step Hyp Ref Expression
1 shss
 |-  ( H e. SH -> H C_ ~H )
2 ocel
 |-  ( H C_ ~H -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) )
3 1 2 syl
 |-  ( H e. SH -> ( A e. ( _|_ ` H ) <-> ( A e. ~H /\ A. x e. H ( A .ih x ) = 0 ) ) )