Description: The orthogonal complement of a subspace is a subspace. Part of Remark 3.12 of Beran p. 107. (Contributed by NM, 10-Oct-1999) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | shocsh | |- ( A e. SH -> ( _|_ ` A ) e. SH ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shss | |- ( A e. SH -> A C_ ~H ) |
|
2 | ocsh | |- ( A C_ ~H -> ( _|_ ` A ) e. SH ) |
|
3 | 1 2 | syl | |- ( A e. SH -> ( _|_ ` A ) e. SH ) |