Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
|- ( G C_ ( _|_ ` H ) -> ( A e. G -> A e. ( _|_ ` H ) ) ) |
2 |
1
|
anim1d |
|- ( G C_ ( _|_ ` H ) -> ( ( A e. G /\ B e. H ) -> ( A e. ( _|_ ` H ) /\ B e. H ) ) ) |
3 |
2
|
imp |
|- ( ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) -> ( A e. ( _|_ ` H ) /\ B e. H ) ) |
4 |
3
|
ancomd |
|- ( ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) -> ( B e. H /\ A e. ( _|_ ` H ) ) ) |
5 |
|
shocorth |
|- ( H e. SH -> ( ( B e. H /\ A e. ( _|_ ` H ) ) -> ( B .ih A ) = 0 ) ) |
6 |
5
|
imp |
|- ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( B .ih A ) = 0 ) |
7 |
|
shss |
|- ( H e. SH -> H C_ ~H ) |
8 |
7
|
sseld |
|- ( H e. SH -> ( B e. H -> B e. ~H ) ) |
9 |
|
shocss |
|- ( H e. SH -> ( _|_ ` H ) C_ ~H ) |
10 |
9
|
sseld |
|- ( H e. SH -> ( A e. ( _|_ ` H ) -> A e. ~H ) ) |
11 |
8 10
|
anim12d |
|- ( H e. SH -> ( ( B e. H /\ A e. ( _|_ ` H ) ) -> ( B e. ~H /\ A e. ~H ) ) ) |
12 |
11
|
imp |
|- ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( B e. ~H /\ A e. ~H ) ) |
13 |
|
orthcom |
|- ( ( B e. ~H /\ A e. ~H ) -> ( ( B .ih A ) = 0 <-> ( A .ih B ) = 0 ) ) |
14 |
12 13
|
syl |
|- ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( ( B .ih A ) = 0 <-> ( A .ih B ) = 0 ) ) |
15 |
6 14
|
mpbid |
|- ( ( H e. SH /\ ( B e. H /\ A e. ( _|_ ` H ) ) ) -> ( A .ih B ) = 0 ) |
16 |
4 15
|
sylan2 |
|- ( ( H e. SH /\ ( G C_ ( _|_ ` H ) /\ ( A e. G /\ B e. H ) ) ) -> ( A .ih B ) = 0 ) |
17 |
16
|
exp32 |
|- ( H e. SH -> ( G C_ ( _|_ ` H ) -> ( ( A e. G /\ B e. H ) -> ( A .ih B ) = 0 ) ) ) |