Step |
Hyp |
Ref |
Expression |
1 |
|
shne0.1 |
|- A e. SH |
2 |
|
shs00.2 |
|- B e. SH |
3 |
|
oveq12 |
|- ( ( A = 0H /\ B = 0H ) -> ( A +H B ) = ( 0H +H 0H ) ) |
4 |
|
h0elsh |
|- 0H e. SH |
5 |
4
|
shs0i |
|- ( 0H +H 0H ) = 0H |
6 |
3 5
|
eqtrdi |
|- ( ( A = 0H /\ B = 0H ) -> ( A +H B ) = 0H ) |
7 |
1 2
|
shsub1i |
|- A C_ ( A +H B ) |
8 |
|
sseq2 |
|- ( ( A +H B ) = 0H -> ( A C_ ( A +H B ) <-> A C_ 0H ) ) |
9 |
7 8
|
mpbii |
|- ( ( A +H B ) = 0H -> A C_ 0H ) |
10 |
|
shle0 |
|- ( A e. SH -> ( A C_ 0H <-> A = 0H ) ) |
11 |
1 10
|
ax-mp |
|- ( A C_ 0H <-> A = 0H ) |
12 |
9 11
|
sylib |
|- ( ( A +H B ) = 0H -> A = 0H ) |
13 |
2 1
|
shsub2i |
|- B C_ ( A +H B ) |
14 |
|
sseq2 |
|- ( ( A +H B ) = 0H -> ( B C_ ( A +H B ) <-> B C_ 0H ) ) |
15 |
13 14
|
mpbii |
|- ( ( A +H B ) = 0H -> B C_ 0H ) |
16 |
|
shle0 |
|- ( B e. SH -> ( B C_ 0H <-> B = 0H ) ) |
17 |
2 16
|
ax-mp |
|- ( B C_ 0H <-> B = 0H ) |
18 |
15 17
|
sylib |
|- ( ( A +H B ) = 0H -> B = 0H ) |
19 |
12 18
|
jca |
|- ( ( A +H B ) = 0H -> ( A = 0H /\ B = 0H ) ) |
20 |
6 19
|
impbii |
|- ( ( A = 0H /\ B = 0H ) <-> ( A +H B ) = 0H ) |