Description: Membership in subspace sum. (Contributed by NM, 4-May-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | shscl.1 | |- A e. SH |
|
shscl.2 | |- B e. SH |
||
Assertion | shseli | |- ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x +h y ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | shscl.1 | |- A e. SH |
|
2 | shscl.2 | |- B e. SH |
|
3 | shsel | |- ( ( A e. SH /\ B e. SH ) -> ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x +h y ) ) ) |
|
4 | 1 2 3 | mp2an | |- ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x +h y ) ) |