Metamath Proof Explorer


Theorem shseli

Description: Membership in subspace sum. (Contributed by NM, 4-May-2000) (New usage is discouraged.)

Ref Expression
Hypotheses shscl.1
|- A e. SH
shscl.2
|- B e. SH
Assertion shseli
|- ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x +h y ) )

Proof

Step Hyp Ref Expression
1 shscl.1
 |-  A e. SH
2 shscl.2
 |-  B e. SH
3 shsel
 |-  ( ( A e. SH /\ B e. SH ) -> ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x +h y ) ) )
4 1 2 3 mp2an
 |-  ( C e. ( A +H B ) <-> E. x e. A E. y e. B C = ( x +h y ) )